用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心编程技巧计算机理论

安全等级特征量及其计算方法

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 12:08:47
【本文由PB创新网为您整理】


【摘要】指出了目前用模糊评价法确定系统的安全等级所存在的问题和不足之处。分别运用模糊随机变量理论和模糊集理论而提出了安全等级模糊随机特征量和安全等级模糊特征量的概念及其计算方法。安全等级特征量及安全等级变量,均为安全等级取值论域上的模糊子集,而并非是一个确定的点。还给出了安全等级的绝对可能性和相对可能性的计算方法。实例表明,笔者所提出的安全等级特征量及可能性的计算方法是科学的、合理的。

【关键词】安全等级评价模糊随机特征量模糊特征量可能性

Characteristic Quantity of Safety Grade and Its Calculation Method

AbstractUsing the method of fuzzy evaluation, existing problems and shortcomings are pointed out as the time of system safety grade being defined. By using fuzzy random variable theory and fuzzy set theory, the concept and its calculation method of fuzzy random characteristic quantity of safety grade are put forward. Both characteristic quantity of safety grade and its variable are the value obtained from the fuzzy sub-set of safety grade on domain, and are not a definite point. Calculation method of absolute and relative possibility is also given. System safety in future can be evaluated and forecasted in a definite condition by the calculation method of fuzzy random characteristic quantity of safety grade. Examples demonstrate that calculation method of characteristic quantity of safety grade and the possibility pointed out in this paper are scientific and rational.

Key words:Safety gradeEvaluationFuzzy random characteristic quantity
Fuzzy characteristic quantityPossibility

1系统安全等级的模糊性
在评价系统的安全水平或等级时,人们常用“极其安全”、“十分安全”、“十分危险”和“极其危险”等不确定性的语言表达方式。这是因为安全和危险是相对的,两者具有亦此亦彼的过渡性质,即具有模糊性。因此,要准确、客观地描述系统的安全等级却十分困难,只能尽可能地使评价结果符合客观实际。其原因是影响系统安全性的因素众多而复杂,且具有模糊性。例如,机械设备可靠性及安全管理水平的“高”与“低”,环境条件的“优”与“劣”,人、机配合的“好”与“差”,等等。在进行评价时,所获得的原始数据也具有模糊性。当然,也不能排除在某些系统中,影响其安全的因素具有确定性,其安全等级也具有确定性的情况。根据模糊集理论,确定性可以看作是模糊性或随机性的一个特例。所以,不管系统的复杂性如何,其安全性均可采用模糊集理论进行评价。系统安全评价的非模糊集方法往往也包含有模糊性。例如,采用概率评价法时最终所得结果是系统处于安全或危险状态的概率,尽管概率值是确定的,但它所代表的含义则具有模糊性。等级系数法和DOW化学公司的火灾爆炸指数法的评价结果也具有同样的性质。可见,系统安全状态的模糊性已成为人们的共识。可以说,模糊集方法是评价系统安全性的最好的方法之一。采用模糊集方法进行安全评价时,所得结果是对应于各安全等级的隶属度,然后按照最大隶属原则或评分法确定系统的安全等级。目前,此法也存在如下问题:①最大隶属原则会丢失许多信息[1],存在着使评价结果失真的可能性。②计算评分值时,与安全等级论域U相对应的分数的选取不尽合理;③一个确定的总分值是相空间中的一个点,而不是一个模糊集合,既不符合模糊集理论,同时也很难反映系统实际的安全状况,亦即其评价结果可能高于或低于实际的安全等级。笔者对这些问题,作了初步研究和探讨。

2安全等级特征量
系统安全评价可分为对系统未来状况和对系统现状的安全评价。对于系统未来状况的安全评价可以称作预评价,它分现实系统的预评价和待建系统的预评价。本文讨论前一种情况。对于现实系统未来的安全性,由于无法控制条件,一些偶然因素使系统运行的结果不可能准确地预先掌握,故具有随机性。安全本身就是一个模糊概念。所以,对系统未来的安全评价可以运用模糊随机变量理论。模糊随机变量的概念于1978年由H.Kwakernaak首次提出的,随后,国内外不少学者对模糊随机变量进行了研究[4~6]。由于系统的现状是已经发生的事件,所以具有确定性。但由于人们所掌握的信息是模糊的,且安全本身具有模糊性,所以,对系统现状的评价要使用模糊集理论。

2.1安全等级模糊随机特征量与安全等级模糊特征量
系统安全等级或安全状态不宜分得过少,但也不宜过多。不失一般性,将系统安全等级分成c级,则其论域为U,并定义ui,i=1,2,…,c,随着i的增大,系统安全性增加,危险性降低。令ωi<ωi+1,则此时相当于ωi越大,系统越安全。与论域U相对应的取值论域为


对于Ω,也可以定义相反的情况。
对系统进行模糊综合评价后,所得出的对各安全等级的隶属度向量为


并且,
是(Ω,A,P)上的模糊随

[1] [2] [3] [4]  下一页

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:38,828.13000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号