用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心编程技巧计算机理论

安全等级特征量及其计算方法

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 12:08:47
,πA2=73.32%,πA3=6.68%。可见,安全等级为(1.88~2.68)级,它相当于习惯上的2.28级。由式(18)~(20),可得方差为D0.20( )=[0.072,3.501]。
2)以对南平化纤厂的评价结果为例。安全等级隶属度向量 =(0.190, 0.341, 0.372,0.067, 0.030),由式(15)和(16)分别可得安全等级模糊特征量 =[2.054,2.758]及其中值 =2.411;由式(21)和式(22)可得安全等级为2级和3级的可能性,即π2=74.93%,π3=25.07%。可见安全等级为2级偏下,它相当于习惯上的2.411级。其最低安全等级为2.758级,亦即在3级范围之列,最高则恰好为2级。按照安全等级模糊特征量所确定的最低安全等级为3级,与按照最大隶属原则及加权平均法确定的安全等级相一致,但二者仍有偏差。其原因是由最大隶属原则丢失许多有用信息和加权平均法在取值时带有主观任意性所致。为3级的可能性仅为25.07%,可见本文提出的方法更为科学、合理。
3)有关文献将系统安全等级分为“优、良、可、劣”4级, =(0.438,0.375,0.125,0.062),并确定安全等级为“优”,按照本文的方法计算的 =[1.485, 2.135], =1.81;π1=0.06%,π2=99.94%。安全等级应为1.81级,即良好偏上。可见其所得结果偏高。
4)采用模糊综合评价有可能使各等级的隶属度趋于均化。为此,有关文献认为需对该评价结果进行处理,使得各等级的隶属度产生显著差别。实际上,人为的处理会使评价结果失真,除非有一种评价方法,其评价结果本身就产生显著差异。该文献中的一评价结果为 =[0.152,0.254,0.251,0.213,0.130],处理后的 =[0.096,0.866, 0.849, 0.555, 0.029]。尽管发生了显著变化,但第2和第3级的隶属度仍然相差很小。按照最大隶属原则,安全等级仍为2级。针对 ,按式(15)和式(16)分别求得 =[2.521,3.314], =2.918,安全等级为3级中等,π3=100%。对 进行规一化并计算,可得 =[2.470, 3.158], =2.814;π′2=0.21%,π′3=99.73%。可见,经过处理后,人为地使安全等级有所提高。本例说明,安全等级模糊特征量的计算是确定评价结果趋于均化的安全等级的好方法。当然,它也适用于非均化的情况。有的文献还根据安全等级隶属度向量中的最大隶属度及各安全等级取值区间的间隔值来确定安全等级,也会人为地使得安全等级增高。仅取安全等级隶属度向量中几个较大的隶属度,其余视为零,并经规一化再重复一次上述步骤,以确定安全等级的方法会导致评价结果失真。如将其中一隶属度向量为 =[0.132, 0.986, 0.893, 0.522, 0],其评价结果为2-,即为2级偏下。加以规一化,按照本文提出的方法计算可得, =[2.373, 3.053], =2.713;安全等级为2级的可能性为π2=5.0%,3级的可能性 π3=95.0%.可见,本文所提方法的计算结果更为符合实际。
5)有关文献对煤层开采自燃危险性预先分析所得隶属度向量经规一化分别为μ1=[0.205, 0.248, 0.297, 0.25],μ2=[0.337, 0.196, 0.256, 0.211]。针对μ1,按本文方法计算,得 =[2.198, 2.965], =2.582;2级的可能性为 π2=29.67%,3级的可能性为π3=70.33%。最高危险性等级约为习惯等级上的3级,与有关文献按最大隶属原则所得危险性等级的结论一致。最低危险等级约为2级。针对μ2,经计算,得 =[1.972, 2.710], =2.341;π2=87.39%,π3=12.61%。结果为1级,两者偏差较大。而对1级的隶属度和对3级的隶属度相差不是很大,综合考虑所有信息,本文计算结果更为合理。
6)有的文献将污水处理厂管理效果分成“很好”、“好”、“中”、“差”和“很差”五级。上旬和中旬的隶属度向量分别为 =[0.43, 0.34, 0.11, 0.09, 0.02], =[0.33,0.26,0.13,0.09, 0.19]。经计算得, =[1.566, 2.232], =1.899; =[2.169,2.931], =2.55, π′2=37.1%,π′3=62.9%。可知,上旬的管理效果比中旬好,结论一致,但意义不同。

4结论
系统安全本身具有模糊性,适合用模糊集理论进行评价。评价结果一般为与各安全等级相对应的隶属度向量。最大隶属原则存在使评价结果失真的可能,本文所提出的安全等级特征量及其计算方法可合理地确定系统的安全等级。也适用于根据隶属度向量确定等级的任何评价。
1)利用模糊随机变量理论,笔者提出了安全等级模糊随机特征量的概念及其计算方法,以及安全等级模糊随机特征量的α水平集及其中值和方差的计算方法。安全等级模糊随机特征量为一集合而非相空间中的一个确定点。利用安全等级模糊随机特征量,可对现实系统未来的安全性进行预评价。
2)系统现状的安全性是一个确定事件,不具有随机性。根据模糊集理论提出了安全等级模糊特征量的概念及其计算方法。安全等级模糊特征量同样为一集合,可对系统现状进行安全性评价,从而评出系统的最高和最低安全等级。
3)根据安全等级特征量对安全等级取值论域中各模糊集的相容程度不同,定义了安全等级的绝对可能性和相对可能性。它们可用于确定系统的安全等级。
4)安全等级变量在各区间中的取值不能根据经验选取,而且也谈不上经验性。取值

上一页  [1] [2] [3] [4]  下一页

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:39,250.00000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号