我国上市公司财务困境的预测模型研究
表9 LPM在财务困境前1年的判定结果
在回判过程中,70家非财务困境公司有4家被错判,误判率为5.71%;69家财务困境公司有10家被错判,误判率为14.49%;总的误判率为10.07%。判定正确率较高。采用同样的方法可以计算其他年份的最佳判定点和误判率。
2.Fisher二类线性判定模型。把财务困境公司划分为组合1,非财务困境公司划分为组合2,对样本公司的财务困境前1年的财务数据,使用同样的6个变量,估计Fisher二类线性判定分析。
对于组合1,判定模型为:
Z=-6.059+0.331x1一25.865x3+4.033x7+3.250x11-11.905x12+4.428x19
对于组合2,判定模型为:
Z=-4.859—0.812x1+3.989x3+3.432x7+1.142x11一7.734x12+5.924x19
以典则(Canonical)变量代替原始数据中指定的自变量,其中,典则变量是原始自变量的线性组合,得到典则的线性判定模型为:
Z=0.448—0.435xl+11.374x3—0.229x7—0.803x11+1.589x12+0.570x19
根据上述判定模型,以财务困境发生前1年的原始数据分别进行回代。二个组合的平均Z值分别是-1.3254和1.3065,样本个数分别为69和70,所以按完全对称原则确定的最佳判定点为z*。由此可知:当把财务困境发生前1年的原始数据代入判定模型所得的判定值Z大于Z*,则判为组合2,即非财务困境公司,否则判为组合1。由此得到的判定结果见表10。同理可计算其他年份的最佳判定点和误判率。
表10 Fisher二类线性判定模型在财务困境前1年
值得指出的是,Fisher判定模型在财务困境发生前1年的误判率为10.07%,与LPM模型的误判率相同,这从应用上证明二个模型是等价的。
3.Iosistic回归模型。使用同样的财务指标和数据,进行二元Logistic回归分析,得到模型的估计结果见表11。
表11 二元Logistic回归模型估计结果
截距模型是将所有自变量删除后只剩一个截距系数模型。当前模型是含有自变量的Logistic回归模型。“Likelihood为似然函数值,“—2LogLikelihood(缩写为—2LL)是似然函数值的自然对数的—2倍,常用来反映模型的拟合程度,其值越小,表示拟合程度越好。因为Idsistic模型是使用最大似然估计,似然函数值越大,则表明越接近最大似然值,拟合程度越好。从表10可见,变量x1、X3、X11的显著水平均小于0.05,说明其预测能力较强;其余3个变量的显著水平较高,说明其预测能力较弱。
方程可表示为:
log(p/(1-p))=-0.867+2.5313X2-40.2785X4+0.4597X8+3.2293X12-3.9544X13-1.7814X20
即
P=1/(1+e-(-0.867+2.5313X1-40.2785X3+0.4597X7+3.2293X11-3.9544X12-1.7814X19))
根据回归所得到的Logistic方程,以0.5为最佳判定点,对财务困境前1年的原始数据进行回代判定,结果见表12。
表12 Logistic回归模型在财务困境前1年的判定结果
在财务困境前1年,70个非财务困境公司有4个被错判,误判率为5.71%,69个财务困境公司有5个被错判,误判率7.25%,总体上看,139个公司有9个被错判,误判率6.47%。同样地,使用二元Logistic回归可以对财务困境前2年财务困境前5年的情况进行判定分析,判定结果见表13。
表13 三种多元判定分析方法估计模型的比较
四、结论与启示
第一,我国上市公司的财务指标包含着预测财务困境的信息含量,因此其财务困境具有可预测性。第二,在我国上市公司陷入财务困境的前1年和前2年,本文所选的21个财务指标中16个指标具有判定和预测财务困境的信息含量,但各个指标的信息含量不同,预测财务困境的准确率不同。在单变量分析中,净资产报酬率的判定效果较好。第三,多变量判定模型优于单变量判定模型。第四,比较三种判定模型的效果表明,Logistic模型的判定准确性最高。
参考文献
陈静,1999:《上市公司财务恶化预测的实证分析》,《会计研究》第4期。
吴世农、黄世忠,1986:《企业破产的分析指标和预测模型》,《中国经济问题》第6期。
张玲,2000:《财务危机预警分析判别模型》,《数量经济技术经济研究》第3期。
Tags:
作者:佚名评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论