浅谈数据仓库技术在商场(超市)中的应用
关键字:数据仓库 商场(超市) 计算机
一、前言
随着计算机技术的发展,越来越多的企业逐渐建立了各种各样的应用子系统,如销售系统、库存系统、财务系统、人事系统等。它们能够较好地满足企业OLTP (Online Transaction Processing,联机事务处理)的应用需求。
但随着市场竞争的日益激烈,企业需要利用现有的数据,进行分析和推理,为企业的决策提供依据。当这种分析处理只涉及到很少的数据库表时是可行的。当数据量迅速地增长而且查询要求不断复杂化时,这种建立在OLTP基础上的DSS就不能很好地满足决策的需求。另外从大量的历史数据中获取信息,要求系统保存大量的历史数据。如果系统在进行事务处理时还要进行复杂的分析处理。这样对于频繁操作性处理的数据库系统而言,将会不堪重负。因此,需要重新组织数据,使其使于进行复杂分析。为适应这一需求,应运而生的就是数据仓库技术。
商场(超市)关系到大众生活水平的提高,它为大众生活提供了便利,同时由于商场(超市)货物、员工的复杂性,使得市场、人事管理、物品供需关系、设备管理显得更为复杂,所以商场(超市)更应该象其他企业一样,应用数据仓库技术完善自己的市场、管理、供需关系等等。
二、数据仓库技术概述
1.数据仓库的概念
“数据仓库是一个用以更好地支持企业或组织的决策分析处理的、面向主题的、集成的、不可更新的、随时间不断变化的数据集合”。面向主题、集成性、不可更新和随时间变化性是其基本特征。可以说,数据仓库是一种解决问题的方案,是用来更好地提取和管理并最终利用信息资源的办法。“它以传统的数据库技术作为存储数据和管理资源的基本手段,以统计分析技术作为分析数据和提取信息的有效手段,以人工智能技术作为挖掘知识和发现规律的科学途径”。数据仓库主要是面向联机分析处理和决策分析的,而不面向事务处理。数据仓库将信息按主题形式加以组织,来揭示信息的内在联系和事物的规律及事物之间的联系。对原有数据库系统中的数据进行重新组织、按需求综合以后,就得到数据仓库中数据。因此,数据仓库中的数据是高度集成的,反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合。数据仓库中的数据是不可更新的,就应用而言,却并非其中的数据一成不变,恰恰相反,数据仓库中的数据由于不断增加新的数据内容,定期刷新和添加,并剔除已经过时的数据内容,所以说,其数据内容是随时间而不断变化的。
2.数据仓库中数据的组织结构
数据仓库中的数据可分为两类,(1)按照数据的综合程度(称之为粒度)分为四个等级:早期细节级、当前细节级、轻度综合级、高度综合级。“元数据经过综合后,首先进入当前细节级,并根据具体需要进行进一步的综合从而进入轻度综合级乃至高度综合级,老化的数据将进入早期细节级”。(2)元数据(metadata)是“关于数据的数据”,它能有效地管理数据仓库,对元数据可从构建时间元数据、使用元数据、控制元数据三个角度分类分析。数据仓库中的数据就是通过粒度划分和分割进行有效地存储的。
3. 相关的信息开发工具
要满足用户全面、系统、多层次信息需求的目标,必须借助于数据仓库并建立数据仓库系统才能实现。“数据仓库系统是以数据仓库为基础,通过查询工具和分析工具,完成对信息的提取,满足用户的各种需求”。因此,进行复杂数据分析、提供管理决策还必须引入相应的数据仓库工具层。“数据仓库系统是多种技术的综合体,由数据仓库、数据仓库管理系统、数据仓库工具三个部分组成”。数据仓库工具层包括:多维分析工具、数据挖掘工具以及可视化工具。多维分析工具主要指联机分析处理(OLAP,On-lineAnalyticalProcessing),“OLAP是针对特定问题的联机数据访问和分析”。目前,这类产品己经有很多了,如BrioQuery,GQL,Impromptu,PowerPlay,Commander,Information Advantage等等。数据挖掘(DM,DataMining)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析原有数据,做出归纳型的推理,从中挖掘出潜在的信息用于决策。
三、数据仓库技术在商场(超市)中的应用
1.设备管理
数据仓库化是商场(超市)范围内数据的处理过程它将商场(超市)内分散的原始操作数据和来自外部的数据汇集和整理在一起,为商场(超市)提供完整、及时、准确和明了的决策信息,有效地服务于商场(超市)的全方位决策。作为一个决策支持环境,DW(DataWar house)收集存储了各种不同数据源中的数据。通过数据的组织给决策支持者提供分布在整个商场(超市)内部跨平台的数据。在对设备管理数据仓库的开发过程中,首先根据商场(超市)对设备管理的具体要求和设想,确定数据仓库开发的目标,规划系统的数据范围和功能制定工作计划;然后分阶
Tags:
作者:佚名评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论