用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

一种新颖的ZVZCSPWM全桥变换器

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-11 00:00:08
式中:Ts为开关周期。

由式(11)可以看出,在带轻载的条件下,式(3)

所表示的Ch上的电流产生如下变化。
javascript:window.open(this.src);" style="cursor:pointer;"/>
    从式(12)可以看出,环路电流对吸持电容的充放电随着负载电流的降低而降低,也就是说电流环可根据负载的情况自动进行调整。

2 电路设计

2.1 超前臂的ZVS条件

为了实现超前臂的ZVS,开关电压应当在死区时间内下降到零,即:

tdead>tm4+tm5    (13)

式中:

javascript:window.open(this.src);" style="cursor:pointer;"/>

从式(15)可以看出,保证开关管实现ZVS的最小电流可由式(16)得到。

javascript:window.open(this.src);" style="cursor:pointer;"/>

不同的吸持电容Ch数值与最大电压值VH所对应的ZVS范围如图4所示。开关管超前臂的关断损耗可通过给IGBT增加外接缓冲电容来减小。从图4还可以看出大电容Ceq对ZVS范围的限制。因此,Ceq的选择应综合考虑ZVS范围和超前臂的开关关断损耗。

2.2 滞后臂的ZCS条件

吸持电容的归一化值如式(17)所示。

javascript:window.open(this.src);" style="cursor:pointer;"/>

图5所示为吸持电容不同归一化值所对应的原边电流的复位情况。为了实现滞后臂的ZCS,Ch的能量应该足够大,从而通过Lr使原边电流复位,且原边电流应当在滞后臂关断之前减小到零。从式(11)、式(12)、式(15)、式(16)、式(17)可得到式(18)。

javascript:window.open(this.src);" style="cursor:pointer;"/>

从式(18)和图5可以看出,为了确保ZCS,应当增加Ch或VH的值。但是,VH的最大值不能高于输入电压反射到次级的电压Vs/n;同样,大电容Ch增大了环路电流,而环路电流又通过Ch间接加到了负载。综合考虑,软开关在变换器功耗方面的效果不仅与开关损耗的减小有关,还与由软开关引起的附加导通损耗有关。为了获得预期的效率,要求在设计时Ch的值取得越小越好,从而使附加导通损耗最小化。

2.3 输出耦合电感

为了保证辅助电路二极管Dc的软变换,输出耦合电感的漏感Llks应当满足式(19)。

javascript:window.open(this.src);" style="cursor:pointer;"/>

式中:Dmin为最小占空比。

给Ch充电的谐振电流也耦合到了输出电感电流中,从而增加了输出电容的电流纹波。因此,Llks应当在满足式(19)的条件下尽量取大,以减小谐波电流的有效值。

3 实验结果

为了验证ZVZCSPWM全桥变换器的工作原理和性能,在实验室完成了一台80V/50A,80kHz的样机,其电路如图6所示,参数如下:

输入直流电压Vs=630(1±10%)V;

图3

    输出直流电压Vo=80V;

变压器原副边匝比N1∶N2=5.33,变压器原边漏感Lr=9μH;
javascript:window.open(this.src);" style="cursor:pointer;"/>
    输出滤波电容Co=10000μF(电解电容);

输出滤波电感Lf=20μH,N3∶N4=1.12,漏感Llks=1.8μH;
javascript:window.open(this.src);" style="cursor:pointer;"/>
    开关管S1~S4(IGBT)IRGPH50KK2(1200V,30A);

输出整流二极管Dc,Dd,Df,DrecC60P40FE(400V,60A);C1=C3=1nF;Ch=0.47μF(电解电容);R=30Ω,C=2.2nF,C′=6.6nF;

开关频率f=80kHz。
javascript:window.open(this.src);" style="cursor:pointer;"/>
    图7给出了实验波形。从图7(a)可以看出,在谐振周期内,原边电流减小到零,从而消除了原边的拖尾电流。从图7(c)可以看出,通过S4的电流在驱动脉冲下降为零之前已经减小到零,从而S4实现零电流关断。从图7(d)可以看出,在死区时间内,S1的电压减小到零,从而S1实现零电压导通。从图7(e)和(f)可以看出,在一个谐振周期内,Ch在满载时完全放电,而在轻载时却没有完全放电,使得环路电流根据负载条件变化作适应性调整。

图8给出了根据原理样机得到的效率曲线。满载时效率最高,达到94%。

图7

4 结语

本文提出了一种新颖的ZVZCSPWM全桥变换器,并具体分析了它的工作原理、电路设计及性能。最后通过一台4kW的原理样机的试验结果,证明了该变换器具有以下主要优点:

——所采用的辅助电路无有源开关;

——次级整流二极管具有与传统的全桥PWM变换器相同的电压应力值;
javascript:window.open(this.src);" style="cursor:pointer;"/>
    ——对吸持电容充放电的环路电流可根据负载的变化进行自适应调整;

——辅助电路二极管Dc实现了软变换;

——能够使变换器在开关频率为80kHz且满载时效率高达94%。



上一页  [1] [2] 

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:15,234.38000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号