用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

单声道/立体声录放芯片MSM9841及其在数字语音录放机中的应用

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 23:55:05
【本文由PB创新网为您整理】
摘要:MSM9841是日本OKI(冲)电气半导体公司研制的单声道/立体声语音控制处理大规模集成芯片。文中介绍了该芯片的结构、特点、工作原理及其在数字语音录放机中的应用。

    关键词:录放机  MSM9841  FIFO

1 引言

MSM9841是日本OKI(冲)电气半导体公司研制的带有1kbitFIFO(先进先出)存储器的单声道/立体声语音控制处理大规模集成芯片。它可以很方便的同外部系统或非半导体存储器进行接口,且具有多种录放模式。由于该芯片采用了较新的ADPCM2算法,因而可以保证非常高的语音回放质量。MSM9841的录音和回放功能可以由微处理器通过8/16bit的总线接口来进行控制。MSM9841采用56脚QFP封装,电源电压为2.7V~5.5V,振荡频率为4.096MHz时的代样频率有以下值可供选择:4.0 kHz、6.4 kHz、8.0 kHz、12.8 kHz、16.0 kHz、32.0 kHz(仅用于回放);振荡频率为5.6448 MHz时,采样频率可以选择22.05 kHz或44.1 kHz(仅用于回放)。MSM9841具有8/16bit总线接口和DMA接口且内含低通滤波器、14bitA/D和D/A转换器,采样频率为16 kHz或更低;具有由用户定义(256/512/1024bit)的FIFO存储功能(当使用8 kHz采样频率,4bitADPCM2/ADPCM算法,非立体声模式时,其缓冲时间为32ms);支持4种录放压缩算法,即4/5/6/7/8bit ADPCM2算法、4bit ADPCM算法、16 bit PCM算法和8bit非线性PCM算法;通过控制命令可实现8级音量控制(0dB~21dB)。
javascript:window.open(this.src);" style="cursor:pointer;"/>
2 引脚排列及功能

MSM9841的引脚排列如图1所示,各引脚的功能如下:

D15~D8:对于8 bit总线接口,这些管脚可以通过命令被定义到外部存储器的输入输出接口。否则,这些管脚只能定义为输入管脚。对于16 bit总线接口,这些管脚可用作外部存储器或微处理器的双向数据总线。

D7~D0:到外部存储器或微处理器的双向数据总线。

WR:写允许,低有效。

RD:读允许,低有效。

CS:读写功能允许,低有效(低电平时,允许读写功能操作)。

D/C:当该管脚为高电平时,语音数据可以从D0~D15引脚输入或输出。当该管脚为低电平时,D0~D7引脚用于输入控制命令或输出状态。

BUSY:当处于录音、回放、暂停状态时,该管脚输出低电平。

图2

    EMP:当FIFO存储器中无数据时该管脚输出高电平,通过命令可使该管脚由高电平变为低电平。

MID:当FIFO中的数据超过FIFO存储空间的一半时,该管脚输出高电平。在回放期间,MID为高电平时开始语音合成。通过命令可使MID由高电平变成低电平。当不使用FIFO时,该管脚可为语音的输入/输出提供一个同步信号。

FUL/DREQR:当FIFO存储空间已满时,该管脚输出高电平。在回放期间,该管脚为高电平,FIFO中不能写入数据。FUL/DREQR输出的高电平可由命令输入来将其改变成低电平。当选择DMA转换和立体声回放时,DREQR输出高电平信号表示需要DMA转换。DREQR输出的高电平亦可由命令输入平将其改变成低电平。

CH/DACKR:当选择立体声回放且CH为高电平时,EMP、MID或FUL管脚输出右移FIFO的状态。当CH为低电平时,EMP、MID或FUL管脚输出左移FIFO的状态。在录音和单声道回放时需将该管脚设置为低电平。当选择DMA转换和立体声回放时,该管脚为DACKR功能。在这种情况下,输入DMA转换应答信号到DACKR。当DACKR为低电平时,IOW信号被接受。DACKR输出的低电平可由命令输入来将其改变成高电平。

DREQL:当选择DMA转换和立体声回放时,DREQL输出高电平表示需要DMA转换。DREQL输出的高电平可由命令输入来将其改变成低电平。

DACKL:当DMA控制器允许DMA转换时,可输入一个信号到DACKL端。如果DACKL为低电平,IOW和IOR信号将被接受。当选择立体声回放时,可给DACKL端输入左移FIFO的DMA转换应答信号。DACKL端的低电平可由命令输入将其改变成高电平。如果不使用DMA转换,应将该脚置为高电平。

IOW:在DMA转换时,该管脚为将外部数据写入MSM9841的写脉冲输入管脚。如果不使用DMA转换,将该引脚置为高电平。

IOR:在DMA转换时,该管脚可作为MSM9841的读脉冲输入管脚。如果不使用DMA转换,应将该引脚置为高电平。

图3

    ADSD:当使用外部ADC时,该管脚为16bit串行数据输入管脚,如果不使用外部ADC,则应将该引脚置为低电平。

DASD:当使用外部DAC时,该管脚为16 bit串行数据输出管脚。

SIOCK:当使用外部ADC或DAC时,该管脚为16 bit串行数据输入/输出的同步时钟管脚。

XT,XT:外部振荡器连接管脚,当使用外部时钟时,可将外部时钟输入到该管脚。

VCK:录音和回放时的输出采样频率。当用外部ADC或DAC时,VCK管脚的信号被用作同步信号。

RESET:复位管脚,低有效。

TESTO、TESTI:测试管脚,将该引脚置为低电平。

SG:模拟地输出管脚。

MIN,LIN:内部OP放大器的反相输入端,同相输入端内部已连到信号地。

MOUT,LOUT:MOUT为内部放大器到MIN的输出端,LOUT为内部放大器到LIN的输出端。

AOUTL:内部LPF(低通滤波器)左路模拟信号输出端。它是回放信号波形输出端,将该管脚连到放大器后可驱动扬声器。

AOUTR:内部LPF(低通滤波器)右路模拟信号输出端。它是回放信号波形输出端,将该管脚连到放大器后可驱动扬声器。

DVDD:数字电源。在该管脚和数字地之间应接一个0.1μF电容。

DGND,AGND:数字地和模拟地。

AVDD:模拟电源。在该管脚和模拟地之间应接一个0.1μF电容。
javascript:window.open(this.src);" style="cursor:pointer;"/>
3 内部结构及工作原理

MSM9841的内部结构如图2所示,它主要由微处理器、定时控制器、音量控制器、ADPCM2/ADPCM/PCM分析器、ADPCM2/ADPCM/PCM/非线性PCM合成器、直接存储器访问接口、FIFO、ADC、DAC、LPF等部件构成。

对MSM9841可采用二进制编码命令进行控制,从而完成录音、回放、停止、暂停、音量调节、DMA转换、设置使用内部或外部D/A、A/D、信号输出模式选择等功能。该控制命令的长度为8bit。

4 以MSM9841为核心的录放机

基于MSM9841的录放机电路如图3所示,该录放机采用双CPU模式,以单片机AT89C52作为录放音模块的主控单元。键盘和液晶显示模块以AT89C2051作为主控单元,通过串口与录放音模块变换指令与数据。由于本录放机未采用DMA方式,故MSM9841的DMA控制管脚均接高电平。MSM9841中D/C管脚的电平高低可决定数据总线上的数据类型。当D/C为低电平时,数据总线上的信号为系统控制命令;当D/C为高电平时,总线上的信号为语音数据。由于AT89C52是8位单片机,而MSM9841支持16位或8位数据总线,所以,在系统工作时,首先要利用MSM9841的控制命令将其设置为8位数据总线模式。

录放机音频输出端采用音频功率放大器LM386,其电路连接如图4所示。当电源电压为+5V时,LM386输出功率为300mW左右。MSM9841内部有2个运算放大器,可用于放大麦克风的语音信号,每个运算放大器对外提供反向输入端和输出端,而同向输入端则在芯片内部与模拟地相连。两个运算放大器可以级连,通过调节外部电阻阻值即可获得所需的放大倍数。通过下式可调节VLO,以使其处于LOUT管脚所允许的电压范围内:

VLO=(R4/R3)VMO=(R2R4/R1R3)VIN(V)

当供电电压为5V时,LOUT引脚所允许的电压范围为1~4V.LOUT管脚在芯片内部与输入低通滤波器相连,可用于去掉超过1/2采样频率的输入频率分量。这样,就可满足数据采样系统所适用的奈奎斯特定理,然后送ADC进行数据采样。放大电路通过隔直电容与麦克风相连,隔直电容主要用于去掉低电平交流信号(约2~20mV)中的直流信号。整个音频输入电路如图5所示。

整个刻录机系统采用4片2M×8 bit的DRAM MSM5116800作为语音存储介质,在较高质量的8kbps的采样速率下,若采用4 bit的ADPCM2算法,4片MSM5116800能够记录的语音长度大约是4×1.024×2000×8/(8×4)=2048s。2M×8 bit的DRAM的地址总线共20位,分为高位地址(即A0~A8和A9R~A11R共12位构成行地址Row address)和低位地址(即A0~A8共9位构成的列地址Column address),两者通过分时复用共用9根地址线A0~A8,每片DRAM的寻址范围为000000H~7FFFFFH,各片DRAM通过不同的CAS信号线来区别。DRAM有多种不同的读写模式和存储单元数据刷新模式,在本系统中,由于所需要的数据率非常低,所以可采用最基本的读写模式,即先发送完整的地址信号(包括行地址和列地址),然后读写;而刷新模式则采用cas-before-ras方式,并将刷新脉冲穿插到读写时序中间。

该系统通过接收键盘指令来完成录放音的操作。录音时,首先利用二进制命令对MSM9841进行初始化,具体内容包括:设置语音合成方式为4 bit的ADPCM2算法;选择采用内部ADC;设置总线宽度为8位;不采用DMA方式;配置FIFO的大小,FIFO最大可配置为1024 bit;设置输出数据的模式;设定采样频率为8.0 kHz。此采样频率可使语音音质大大优于电话的音质。提高采样频率还可使音质进一步得到改善,但录音时间也就相应缩短;反之,较低的采样频率会增加录音时间,但会降低音质。
javascript:window.open(this.src);" style="cursor:pointer;"/>
   

[1] [2]  下一页

Tags:

作者:佚名
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:12,437.50000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号