用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

PCI总线仲裁器的设计与实现

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 23:47:32
【本文由PB创新网为您整理】
摘要:基于Altera的CPLD器件的PCI总线仲裁器设计,实现仲裁器的AHDL编程,并结合仿真结果对PCI总线的仲裁进行了论述。

    关键词:PCI仲裁器,CPLD,仿真

    PCI总线仲裁器通常是集成在PCI芯片组中。随着计算机应用的深入,尤其是嵌入式系统的不断发展,集成的仲裁器难以满足某些场合的应用。而采用CPLD技术实现的独立的PCI总线仲裁器,则较好的适应了这方面的需求。

    一﹑PCI总线仲裁机制

    PCI的仲裁是基于设备访问,而不是基于时间分配的。在任一时刻,总线上的一个主设备要想获得对总线的控制权,就必须发出它的请求信号(PCIreqN),如果此刻该设备有权控制总线,总线仲裁器就使该设备的总线占用允许信号(PCIgntN)有效,进而获得总线的使用权。当有多个主设备同时发出总线控制请求时,就必须由仲裁器根据一定的算法判定,当前应该由哪个主设备获得控制权。

javascript:window.open(this.src);" style="cursor:pointer;"/>

    二、仲裁算法

    常用的仲裁算法有:公平算法、循环算法等。

    本仲裁器设计采用的是循环算法,设备的优先级预先设定。目前的设计实现对四个PCI设备请求的仲裁,各设备优先级由高到低安排为:设备0 >设备1 > 设备2 > 设备3。

    系统启动伊始,没有设备使用PCI总线,也没有设备请求使用PCI总线,仲裁器总是设定设备0拥有总线控制权,即将总线停靠于设备0。此时设备0的PCIgntN是有效的。而在此之后,仲裁器总是指定PCI总线的最后一个使用者为总线的停靠设备。

    当有一个或多个设备提出拥有总线使用权的请求时,仲裁器将按照事先安排的设备优先级顺序逐一查询。对于只有一个设备请求的情况,该设备的请求将会马上得到响应;如果多个设备同时发出请求时,仲裁器裁定首先响应优先等级高的设备的请求,当此设备完成数据传输交出总线使用权后,再由优先等级低的设备使用总线。示意框图见图2。

    如果一个设备已获得总线使用权并且正在进行地址、数据传输时,比它优先级别高的设备也发出了占用请求,仲裁器将会撤销优先级别低的设备的总线占用信号,并把总线使用权交给优先级别高的设备,同时还要确保在任一时刻不会出现多个设备同时占用总线的情况。具体见仿真分析。

javascript:window.open(this.src);" style="cursor:pointer;"/>

    三、编程设计与实现

    本设计使用AHDL语言,在MaxplusII 10.0上编译通过,并进行了仿真。

    1. 仲裁器信号定义


SUBDESIGN  PCI_arb
(       -- 输入
PCIclk         :INPUT  -- PCI时钟
          Arbiter_rstN     :INPUT  -- 复位信号
          PCIreqN[3..0]    :INPUT  -- 总线占用请求信号
          frameN         :INPUT  -- 数据交易的启动或开始,主设备发出
          irdyN           :INPUT  --交易数据准备好,主设备发出
         
-- 输出
          PCIgntN[3..0]    :OUTPUT -- 总线占用允许信号
     )

    frameN和irdyN决定了总线的状态,只要两个信号中的一个有效,就表明总线上有数据通过,总线处于忙状态;当两个信号都无效时,则总线处于空闲状态。

2. 仲裁器状态机定义
parb_sm : MACHINE
  OF BITS ( PARB2 , PARB1 , PARB0 )
  WITH STATES (
    PARB_SLT0  = 0, -- PCIgnt0#有效,设备0拥有总线使用权,总线空闲
    PARB_SLT0D = 1, -- PCIgnt0#有效,数据在总线上传输,总线处于忙状态
    PARB_SLT1  = 2, -- 以下类同
    PARB_SLT1D = 3,
    PARB_SLT2  = 4,
    PARB_SLT2D = 5,
    PARB_SLT3  = 6,
PARB_SLT3D = 7 );

    3. 仲裁的实现

   由于采用循环算法,对每一个设备而言状态的变换都是相同的,下面仅以设备0的状态转换为例:
    CASE  parb_sm  IS
       WHEN PARB_SLT0 =>
           IF ( !frameN # !irdyN # frameN & irdyN & PARBtout4 ) THEN
              IF ( !PCIreqN1 ) THEN
                 PCIgntN1  = GND;
                 parb_sm   = PARB_SLT1D;
              ELSIF ( !PCIreqN2 ) THEN
                 PCIgntN2  = GND;
                 parb_sm   = PARB_SLT2D;
              ELSIF ( !PCIreqN3 ) THEN
                 PCIgntN3  = GND;
                 parb_sm   = PARB_SLT3D;
              ELSE
                 PCIgntN0  = GND;
                 parb_sm   = PARB_SLT0D;
           ELSE
              PCIgntN0  = GND;
              parb_sm   = PARB_SLT0D;
           END IF;

      WHEN PARB_SLT0D =>
          PCIgntN0    = GND;
           IF ( frameN & irdyN ) THEN
              parb_sm   = PARB_SLT0;
           ELSE
              Parb_sm   = PARB_SLT0D;
           END IF;
    
    为了避免AD线上和PAR线上出现时序竞争,一个设备的PCIgntN信号有效和另一个设备的PCIgntN的撤销,如果不是在总线空闲状态,则两者之间至少要有一个时钟的延迟。设计中,将每个设备占用总线的状态分为两部分,PARB_SLTx(总线空闲)和PARB_SLTxD(总线忙);状态机不能从一个设备的PARB_SLTxD状态直接转到另一个设备的PARB_SLTyD状态,中间必须经过至少一个时钟的PARB_SLTx状态的衔接,这样就避免了总线上竞争的出现。

    代码中,PARBtout为一5位计数器,对PCI时钟个数进行计数,用来判别设备发出请求信号后是否在规定时间内(16个时钟,即PARBtout[4..0] = 10000)占据了总线,启动了数据的传输;如果超时,则撤销该设备的请求信号,并按预设的优先级顺序,对其余设备总线使用权进行新一轮的裁定。计数器的编程实现:

IF ( PARBtout4 # PCIreqN0 & PCIreqN1 & PCIreqN2 & PCIreqN3 ) THEN
PARBtout [ ] = 0;
     ELSIF ( frameN & irdyN ) THEN
        PARBtout [ ] = PARBtout [ ] + 1;
     ELSE
        PARBtout [ ] = 0;
     END IF;

四、仿真分析

    1. 单一设备总线请

[1] [2]  下一页

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:13,359.38000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号