用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

基于DSP的网络化无刷直流电动机控制系统

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 22:37:54
【本文由PB创新网为您整理】
摘要:设计了一种基于DSP的无刷直流电动机控制系统,对其中的转子位置检测电路、驱动电路、保护电路以及驱动器网络控制等内容进行了详细的讨论,并给出了相应的硬件电路。该设计方案电路简单、可靠性强,具有较高的应用价值。

    关键词:直流无刷电动机 DSP 网络伺服控制器

众所周期,直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速)、调速范围宽、低速性能好(启动转矩大、启动电流小)、运行平衡、噪音低、效率高等方面。目前无刷直流电机已广泛应用于数控机床的进给驱动、机器人的伺服驱动以及新一代家用电器的变速驱动中。
javascript:window.open(this.src);" style="cursor:pointer;"/>
    为进一步提高控制系统的综合性能,就无刷直流电机控制系统的控制器而方,近几年国外一些大公司纷纷推出较MCU性能更加优越的DSP(数字信号处理器)单片电机控制器,如ADI公司的ADMC3xx系列,TI公司的TMS320C24系列及Motorola公司的DSP56F8xx系列。它们都是将一个以DSP为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内,使价格大大降低且体积缩小、结构紧凑、使用便捷、可靠性提高。其最大速度可达20~40MIPS,指令执行时间或完成一次动作的时间仅为几十纳秒,和普通的MCU相比,运算及处理能力增强10~50倍,确保了系统有更优越的控制性能。

1 系统原理概述

在本文设计的无刷直流电动机控制系统中,采用TI公司的TMS320LF240x芯片作为控制器。TMS320LF240x芯片作为DSP控制器24x系列的新成员,是TMS320C2000平台下的一种定点DSP芯片。从结构设计上讲,240x系列DSP提供了低成本、低消耗、高性能的处理能力,对电机的数字化控制作用非常突出。

在图1所示的基于TMS320LF240x的无刷直流电动机控制系统中,采用TMS320LF240 DSP作为控制器,处理采集到的数据和发送控制命令。TMS320LF240控制器首先通过三个I/O端口捕捉直流电机上的霍尔元件H1、H2、H3的高速脉冲信号,检测转子的转动位置,并根据转子的位置发出相应的控制字来改变PWM信号的当前值,从而改变地直流电机驱动电路(全桥控制电路MOSFET)中功率管的导通顺序,实现对电机转速和转动方向的控制。电机的码盘信号A、B通过DSP控制器的CAP1、CAP2端口进行捕捉。捕捉到的数据存放到寄存器中,通过比较捕捉到的A、B两相脉冲值可以确定当前电机的正反转状态以及转速。在系统的运行过程中,驱动保护电路会检测当前系统的运行状态。如果系统中出现过流或者欠压情况,PWM信号驱动器IR2130会启动内部保护电路,锁住后继PWM信号的输出,同时通过FAULT引脚拉低DSP控制器的PDPINT引脚电压,启动DSP控制器的电源驱动保护。这时所有的EV模块输出引脚将被硬件置为高阻态,实现对控制系统的保护。该系统中设计的保护电路主要用于保护DSP控制器和电机的驱动电路。

图2 全桥式电机驱动电路控制原理图

    下面主要介绍系统的转子位置检测电路、驱动电路、系统保护电路等。

2 转子位置检测电路

2.1 检测电路应用原理

控制无刷直流电动机时,DSP控制器主要是根据转子当前的转动位置,发出相应的控制字,通过改变PWM脉冲信号的占空比来实现对电机的控制。无刷直流电动机的转子位置是由位置传感器检测出来的。在本设计方案中,采用了三个光电式位置传感器(霍尔元件)。这种传感器是利用光电效应制成的,由跟随电动机转子一起旋转的遮光板和固定不动的光源及光电管等部件组成。遮光板开有180°左右电角度的缝隙,且缝隙的数目等于无刷直流电动机转子磁极的极对数。当缝隙对着光电晶体管时,光源射到光电晶体管上,产生“亮电流”输出。其它光电晶体管因遮光板挡住光线,只有“暗电流”输出。在“亮电流”作用下,三相绕组中一相绕组有电流导通,其余两相绕组不工作。遮光板随转子的转动而轮流输出“亮电流”或“暗电流”的信号,以此来检测转子磁极位置,控制电动机定子三相绕组轮流导通,使该三相绕组按一定顺序通电,保证了无刷直流电动机正常运行。
javascript:window.open(this.src);" style="cursor:pointer;"/>
    随着电机转子的旋转,光电管间歇接收从光源发出的光,不断导通和截止,从而产生一系列“0”、“1”信号。这些脉冲信号通过I/O口传输给DSP,DSP读取霍尔元件的状态值,确定转子当前的位置,通过改变PWM信号输出的高有效或低效来控制驱动电路,改变MOSFET管的导通顺序,很好地实现电机换相的控制;同时改变PWM信号占空比,来调节电机的转速。电动机驱动电路控制桥功率管的导通顺序为Q1Q2、Q2Q3、Q3Q4、Q4Q5、Q5Q6、Q6Q1,为两两通电方式。电机转子每转一圈,霍尔元件H1、H2、H3会出现六种状态,DSP对每一种状态发出相应的控制字,改变电机的通电相序,实现电机的连续运行。

电机驱动电路控制原理图和电机正转换相表如图2和表1所示。

表1 电机正转换相表

 PWM6PWM5PWM4PWM3PWM2PWM1H1H2H3ACTR
Q12Q0011111111101010X03FE
Q2Q30011111011111000X03EF
Q3Q41111111000111100X0FE3
Q4Q%1110111100110100X0FE3
Q%Q61110001111110110X0E3F
Q6Q11111001111100010X0F3E

2.2 霍尔元件信号处理

电动机上的霍尔元件信号发生时序如图3所示。

直流电机产生的霍尔元件信号通常高低电平相互覆盖。而对电机驱动桥路的控制需要根据检测到的三个霍尔元件的每一次跳变,来触发控制器进入中断响应,同时还要记录霍尔元件的状态。因此在设计中对三个霍尔元件做两步处理:首先把三个霍尔元件的信号接到TMS320LF240的三个I/O引脚上,记录当前的状态;然后把霍尔元件信号作为三路输入接到CPLD的I/O口,通过编程实现一路连续的窄脉冲输出,接到TMS320LF240的CAP3引脚上。每一个脉冲触发一次中断,控制驱动桥路的导通顺序,并根据当前的霍尔元件状态信息对电机的转速和正反转进行控制。

3 驱动电路

电机控制的驱动器采用IR2130芯片。IR2130/IR2132(J)(S)是一种高电压、高速度的功率MOSFET和IGBT驱动器,工作电压为10~20V,分别有三个独立的高端和低端输出通道。逻辑输入与CMOS或LSTTL输出兼容,最小可以达到2.5V逻辑电压。外围电路中的参考地运行放大器通过外部的电流检测电位器来提供全桥电路电流的模拟反馈值,如果超出设定或调整的参考电流值。IR2130驱动器的内部电流保护电路就启动关断输出通道,实现电流保护的作用。IR2130驱动器反映高脉冲电流缓冲器的状态,传输延迟和高频放大器相匹配,浮动通道能够用来驱动N沟道功率MOSFET和IGBT,最高电压可达到600V。

IR2130芯片可同时控制六个大功率管的导通和关断顺序,通过输出HO1,2,3分别控制三相全桥驱动电路的上半桥Q1、Q3、Q5的导通关断,而IR2130的输出LO1,2,3分别控制三相全桥驱动电路的下半桥Q4、Q6、Q2的导通关断,从而达到控制电机转速和正反转的目的。

图4 IR2130的典型电路

   

[1] [2]  下一页

Tags:

作者:佚名
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:20,906.25000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号