用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

电机驱动芯片LMD18200原理及应用

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 22:23:38
【本文由PB创新网为您整理】
[摘要] LMD18200是美国国家半导体公司(NS)推出的专用于直流电动机驱动的H桥组件。同一芯片上集成有CMOS控制电路和DMOS功率器件,利用它可以与主处理器、电机和增量型编码器构成一个完整的运动控制系统。LMD18200广泛应用于打印机、机器人和各种自动化控制领域。本文介绍了LMD18200芯片的结构、原理及其典型应用。

    [关键词] LMD18200 MC68332 PWM 双极性驱动 单极性驱动

1、 主要性能

l 峰值输出电流高达6A,连续输出电流达3A;
l 工作电压高达55V;
l Low RDS(ON) typically 0.3W per switch;
l TTL/CMOS兼容电平的输入;
l 无 “shoot-through” 电流;
l 具有温度报警和过热与短路保护功能;
l 芯片结温达145℃,结温达170℃时,芯片关断;
l 具有良好的抗干扰性。

2、 典型应用

l 驱动直流电机、步机电机
l 伺服机构系统位置与转速
l 应用于机器人控制系统
l 应用于数字控制系统
l 应用于电脑打印机与绘图仪

3、 内部结构和引脚说明

LMD18200外形结构如图1所示,内部电路框图2如图所示。它有11个引脚,采用TO-220和双列直插式封装。

javascript:window.open(this.src);" style="cursor:pointer;"/>

javascript:window.open(this.src);" style="cursor:pointer;"/>

各引脚的功能如下:

引脚

名称

功能描述

111

桥臂12的自举输入电容连接端

在脚1与脚2、脚10与脚11之间应接入10uF的自举电容

210

H桥输出端

 

3

方向输入端

转向时,输出驱动电流方向见表1。该脚控制输出1与输出2(脚210)之间电流的方向,从而控制马达旋转的方向。

4

刹车输入端

刹车时,输出驱动电流方向见表1。通过该端将马达绕组短路而使其刹车。刹车时,将该脚置逻辑高电平,并将PWM信号输入端(脚5)置逻辑高电平,3脚的逻辑状态决定于短路马达所用的器件。3脚为逻辑高电平时,H桥中2个高端晶体管导通;3脚呈逻辑低电平时,H桥中2个低端晶体管导通。脚4置逻辑高电平、脚5置逻辑低电平时,H桥中所有晶体管关断,此时,每个输出端只有很小的偏流(1.5mA)。

5

PWM信号输入端

PWM信号与驱动电流方向的关系见表1。该端与3脚(方向输入)如何使用,决定于PWM信号类型。

67

电源正端与负端

 

8

电流取样输出端

提供电流取样信号,典型值为377 µA/A

9

温度报警输出

温度报警输出,提供温度报警信号。芯片结温达145℃时,该端变为低电平;结温达170℃时,芯片关断。

1 LMD18200逻辑真值表

 

PWM

转向

刹车

实际输出驱动电流

电机工作状态

H

H

L

流出1、流入2

正转

H

L

L

流入1、流出2

反转

L

×

L

流出1、流出2

停止

H

H

H

流出1、流出2

停止

H

L

H

流入1、流入2

停止

L

X

H

NONE

 

LMD18200工作原理

    内部集成了四个DMOS管,组成一个标准的H型驱动桥。通过充电泵电路为上桥臂的2个开关管提供栅极控制电压,充电泵电路由一个300kHz左右的工作频率。可在引脚1、11外接电容形成第二个充电泵电路,外接电容越大,向开关管栅极输入的电容充电速度越快,电压上升的时间越短,工作频率可以更高。引脚2、10接直流电机电枢,正转时电流的方向应该从引脚步到引脚10;反转时电流的方向应该从引脚10到引脚2。电流检测输出引脚8可以接一个对地电阻,通过电阻来输出过流情况。内部保护电路设置的过电流阈值为10A,当超过该值时会自动封锁输出,并周期性的自动恢复输出。如果过电流持续时间较长,过热保护将关闭整个输出。过热信号还可通过引脚9输出,当结温达到145度时引脚9有输出信号。

4、 典型应用

LMD18200典型应用电路如图3所示。

javascript:window.open(this.src);" style="cursor:pointer;"/>

LMD18200提供双极性驱动方式和单极性驱动方式。双极性驱动是指在一个PWM周期里,电动机电枢的电压极性呈正负变化。双极性可逆系统虽然有低速运行平稳性的优点,但也存在着电流波动大,功率损耗较大的缺点,尤其是必须增加死区来避免开关管直通的危险,限制了开关频率的提高,因此只用于中小功率直流电动机的控制。本文中将介绍单极性可逆驱动方式。单极性驱动方式是指在一个PWM周期内,电动机电枢只承受单极性的电压。

该应用电路是Motorola 68332CPU与LMD18200接口例子,它们组成了一个单极性驱动直流电机的闭环控制电路。在这个电路中,PWM控制信号是通过引脚5输入的,而转向信号则通过引脚3输入。根据PWM控制信号的占空比来决定直流电机的转速和转向。采用一个增量型光电编码器来反馈电动机的实际位置,输出AB两相,检测电机转速和位置,形成闭环位置反馈,从而达到精确控制电机。

javascript:window.open(this.src);" style="cursor:pointer;"/>

5、 结束语

电动机的数字控制是电动机控制的发展趋势,用单片机对电动机进行控制是实现电动机数字控制的最常用的手段。使用专门的电机控制芯片LMD18200可以减轻单片机负担,工作更可靠。



Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:6,953.12500 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号