非接触卡MCRF200及PSK读写器电路设计
摘要:本文介绍了非接触式IC卡芯片MCFR200的特点和工作原理,并对其在PSK工作模式下的读写器电路设计作了较详细的论述。该PSK解调方法亦可用于设计TYPE B型卡读写器BPSK的解调电路。PSK方式的优点是读出速度快捷。
关键词:非接触卡;MCRF200;读写器;PSK;负载调制
1 MCRF200简介
MCRF200是Microchip公司生产的非接触式可编程无源RFID器件,它的工作频率载波为125kHz。该器件有两种工作模式:初始Native模式和读模式。所谓初始模式是指MCRF200具有一个未被编程的存贮阵列,而且能够在非接触编程时提供一个缺损状态其波特率为载波频率fc的128分频,调制方式为FSK,数据码为NRZ码;而读模式是指在接触或非接触方式编程后的永久工作模式,在该模式下,MCRF200芯片中配置寄存器详见后述的锁存位CB12置1,芯片上电后,将依据配置寄存器的设置并按协议发送数据。
javascript:window.open(this.src);" style="cursor:pointer;"/>
MCRF200的其它主要性能如下:
●带有一次可编程(OTP)的96位或128位用户存储器(支持48位或64位协议);
●内含整流和稳压电路;
●功率损耗极低;javascript:window.open(this.src);" style="cursor:pointer;"/>
●编码方式可在NRZ码、曼彻斯特码、差分曼彻斯特码之间选择;
●调制方式可在直接调制(ASK)、FSK、PSK1和PSK2(PSK1、PSK2定义见后述中选择);
●采用PDIP和SOIC封装形式。
2 MCRF200的工作原理
2.1 应用系统构成
MCRF200的典型应用系统构成如图1所示。图中,引脚VA和VB接电感L1和电容C1构成的外接谐振电路,该LC谐振电路的谐振频率为125kHz。读写器边的LC电路也谐振于125kHz则用于输出射频能量,同时可接收MCRF200芯片以负载调制方式送来的数据信号。
2.2 芯片内部组成原理
图3
MCRF200芯片的内部电路框图如图2所示,它由射频前端电路和存贮器电路两大块组成。其中,射频前端电路用于完成芯片所有的模拟信号处理和变换功能,包括电源、时钟、载波中断检测、上电复位、负载调制等电路。此外,它还用来实现编码、调制方式的逻辑控制;而配置寄存器电路则用于确定芯片的工作参数。该配置寄存器不能被非接触方式编程,因为它在非接触方式下已经被Microchip公司在生产时进行过编程。
配置寄存器各位的控制功能如下:
●CB1:用于设置存贮器阵列的大小。当CB1为1时,用户阵列为128位;为0时,其用户阵列为96位。
●CB2、CB3、CB4位:该三位编码可用于设置波特率,其编码表列于表1。javascript:window.open(this.src);" style="cursor:pointer;"/>
●CB5用来设置同步字。CB5为1时,有1.5位同步字;为0时,无同步字。
●CB6与CB7:用于设置数据编码方式,具体见表2所列。
●CB8与CB9:调制方式选择位,具体见表3。
●CB10:PSK速率选择位。该位为1时选择fc/4;为0时则选择fc/2其中fc为载波频率。
●CB11:该位总为0。
●CB12:该位为0时,存贮阵列未锁定;为1时,存贮阵列被锁定。
表1 波特率设置表(fc为载波频率)
CB2 | CB3 | CB4 | 波特率 | CB2 | CB3 | CB4 | 波特率 |
0 | 0 | 0 | fc/128 | 1 | 0 | 0 | fc/64 |
0 | 0 | 1 | fc/100 | 1 | 0 | 1 | fc/50 |
0 | 1 | 0 | fc/80 | 1 | 1 | 0 | fc/40 |
0 | 1 | 1 | fc/32 | 1 | 1 | 1 | fc/16 |
表2 数据编码方式设置
CB7 | 0 | 0 | 1 | 1 |
CB6 | 0 | 1 | 0 | 1 |
编码方式 | NRZ-L | 曼彻斯特编码 | 差分曼彻斯特码 | 反曼彻斯特码 |
表3 调制方式选择(fc为载波频率)
CB9 | CB8 | 市制方式 |
0 | 0 | FSK:0为fc/8;1为fc/10 |
0 | 1 | PSK1 |
1 | 0 | 直接 |
1 | 1 | PSK2 |
3 PSK读写器电路设计
3.1 PSK调制
MCRF200的PSK调制方式有两种:PSK1和PSK2。采用PSK1调制时,每当相位在数据位的上升沿或下降沿时,将在从位起始处跳变180°;而在PSK2调制时,相位将在数据位为1时从位起始处跳变180°,为0时则相位不变。PSK1是一种绝对码方式,PSK2是一种相对码方式,因此,PSK读写器硬件只能按一种调制方式设计(如PSK1),而当要工作在另一调制方式时,可用软件进行转换。
图3所示是一个典型的PSK调制信号波形示意图,图中假设PSK速率为数据位速率的8倍。
javascript:window.open(this.src);" style="cursor:pointer;"/>
3.2 PSK读写器
PSK读写器的电路结构如图4所示。它由4MHz晶体振荡器、分频器、载波功放、包络检波器、滤波放大、脉冲成形器、相位比较器、微处理器及与主机接口电路等组成。
图4中,读写器发收两通道的信号流程已很清楚,这些电路的设计参考文献很多。下面仅就功率放大器、包络检波、PSK解调以及RS-232串口电路进行分析。
(1)功放电路
该PSK读写器的功放电路如图5所示。图中,T1、T2、T3用于组成B类放大器,L1、C1和C2串联谐振于125kHz,选通分频器输出的125kHz载波加至功放,L2和C3用于构成输出谐振电路,这样,在L2上将产生电磁场,从而保证卡芯片进入场区时能获得足够的载波能量而被激活。但L2所产生的场能量也有一定的限制,通常在30m处测试应不超过65dBμV(dBμV=20logμV)。
(2)包络检波电路
非接触IC卡的负载调制通常采用AM方式,读写器中的载波解调采用简单的包络检波电路,图5中,D3和D4的作用是对芯片负载调制信号进行全波检波,以检出PSK包络。
而R8和C5组成的低通滤波器则应满足包络检波条件,即:
R8C5≥(5-10)/ωC
式中:ωC为载波角频率。但应注意为了减小惰性失真,R8 和C5不应取值过大。
javascript:window.open(this.src);" style="cursor:pointer;"/>