用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心编程技巧编程其他

CSA

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-03-16 19:38:54
 

1.1 Aim of this Assignment

 

To show how the inputs to an adder circuit may be modified to make the resulting circuit perform other useful functions.

 

1.2Outline Circuit of the Device

 

The figure below shows a multi-bit adder having inputs A( a number), B(a number), and C0( a single bit). The adder forms an output, F, where F=A plus B plus C0. T is also a number, and Cin, M1 and M0 are each single bits. Two logic circuits generate outputs B and C0 as shown.

 

 

Adder

 A                    B

                        C0

              F

Logic

Logic

M1

M2

 A

 T

Cin

 


                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 


(figure 1)

 

 

2.1 Task

 

Obtain Boolean expressions for the two logic circuits such that the output F is according to the following table. Here, Bi(Ti, M1, M0) and C0(Cin, M1, M0).

 

M1   M0

    F

0     0

A plus T

0     1

A minus T

1     0

A - 1

1     1

A+1

 

(table 1.1)

 

Here, F = A plus B plus C0. While Bi = (Ti, M1, M0) and C0(Cin, M1, M0), we can finish table 1.1 like below. F=A plus Bi and C.

 

M1   M0

    F

     Bi

     C0

0     0

A plus T

Ti

0

0     1

A minus T

Not Ti

1

1     0

A - 1

1

0

1     1

A+1

0

1

                                                                                                                                                                 (table 1.2)

 

 

i) A logic expression that relates bit Bi to bit Ti and M1 and M0.

 

From figure 1.1,we can see:

  Here,

M1  M0  Ti           Bi

0     0     0            0

0     0     1            1

0     1     0            1

0     1     1            0

1     0     0            1

1     0     1            1

1     1     0            0

1     1     1            0

 

                                                 (table 1.3)

 

From the table1.3, we can draw a map for function Bi

.

Bi

M1

Ti

M0

 


                                  

0

1

0

1

1

0

0

1

 

 

                            (table 1.4)

 

 

 

 

From the table 1.4, here Boolean Expression for Bi.

Bi = M1M0’ + TiM0’ + Ti’M1’M0

(  Ti’  =  not Ti,

M1’  =  not M1,

M0’  =  not M0.)

 

Here, we can prove it:

 

M1M0’

TiM0’

Ti’M1’M0

M1   M0

    F

     Bi

   0  1

   Ti  1

 Ti’  1  0

0     0

A plus T

Ti

   0  1

   Ti  0

 Ti’  1  1

0     1

A minus T

Not Ti

   1  1

   Ti  1

 Ti’  0  0

1     0

A - 1

1

   1  0

   Ti  0

 Ti’  0  1

1     1

A+1

0

 

(Table 1.5)

 

ii) A logic expression that relates C0 to Cin and M1 and M0.

 

       While C0(Cin, M1, M0), we know that C0 depends on Cin and M1 and M0. From the figure 1.1, we can see:

 

 

M1  M0  Cin         C0

0     0     0            0

0     0     1            0

0     1     0            1

0     1     1            1

1     0     0            0

1     0     1            0

1     1     0            1

1     1     1            1

 

                                                 (table 1.7)

 

From the table 1.7,  we can draw a map for function C0.

C0

M1

Tags:

作者:佚名
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:22,046.88000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号