用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心编程技巧编程其他

iczelion tut29

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-03-16 19:33:44

Tutorial 29: Win32 Debug API Part 2


We continue with the subject of win32 debug API. In this tutorial, we will learn how to modify the debuggee process.

Theory:

In the previous tutorial, we know how to load the debuggee and handle debug events that occur in its process. In order to be useful, our program must be able to modify the debuggee process. There are several APIs just for this purpose.

  • ReadProcessMemory This function allows you to read memory in the specified process. The function prototype is as follows:

    ReadProcessMemory proto hProcess:DWORD, lpBaseAddress:DWORD, lpBuffer:DWORD, nSize:DWORD, lpNumberOfBytesRead:DWORD

    hProcess is the handle to the process you want to read.
    lpBaseAddress is the address in the target process you want to start reading. For example, if you want to read 4 bytes from the debuggee process starting at 401000h, the value in this parameter must be 401000h.
    lpBuffer is the address of the buffer to receive the bytes read from the process.
    nSize is the number of bytes you want to read
    lpNumberOfBytesRead is the address of the variable of dword size that receives the number of bytes actually read. If you don't care about it, you can use NULL.

  • WriteProcessMemory is the counterpart of ReadProcessMemory. It enables you to write memory of the target process. Its parameters are exactly the same as those of ReadProcessMemory

    The next two API functions need a little background on context. Under a multitasking OS like Windows, there can be several programs running at the same time. Windows gives each thread a timeslice. When that timeslice expires, Windows freezes the present thread and switches to the next thread that has the highest priority. Just before switching to the other thread, Windows saves values in registers of the present thread so that when the time comes to resume the thread, Windows can restore the last *environment* of that thread. The saved values of the registers are collectively called a context.
    Back to our subject. When a debug event occurs, Windows suspends the debuggee. The debuggee's context is saved. Since the debuggee is suspended, we can be sure that the values in the context will remain unchanged . We can get the values in the context with GetThreadContext and we can change them with SetThreadContext.
    These two APIs are very powerful. With them, you have at your fingertips the VxD-like power over the debuggee: you can alter the saved register values and just before the debuggee resumes execution, the values in the context will be written back into the registers. Any change you made to the context is reflected back to the debuggee. Think about it: you can even alter the value of the eip register and divert the flow of execution to anywhere you like! You won't be able to do that under normal circumstance.

    GetThreadContext proto hThread:DWORD, lpContext:DWORD

    hThread is the handle to the thread that you want to obtain the context from
    lpContext is the address of the CONTEXT structure that will be filled when the function returns successfully.

    SetThreadContext has exactly the same parameters. Let's see what a CONTEXT structure looks like:

  • CONTEXT STRUCT
  • ContextFlags dd ?
    ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_DEBUG_REGISTERS
  • ;-----------------------------------------------------------------------------------------------------------
    iDr0 dd ?
    iDr1 dd ?
    iDr2 dd ?
    iDr3 dd ?
    iDr6 dd ?
    iDr7 dd ?
  • ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_FLOATING_POINT
  • ;-----------------------------------------------------------------------------------------------------------
  • FloatSave FLOATING_SAVE_AREA <>
  • ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_SEGMENTS
  • ;-----------------------------------------------------------------------------------------------------------
  • regGs dd ?
    regFs dd ?
    regEs dd ?
    regDs dd ?
  • ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_INTEGER
  • ;-----------------------------------------------------------------------------------------------------------
  • regEdi dd ?
    regEsi dd ?
    regEbx dd ?
    regEdx dd ?
    regEcx dd ?
    regEax dd ?
  • ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_CONTROL
  • ;-----------------------------------------------------------------------------------------------------------
  • regEbp dd ?
    regEip dd ?
    regCs dd ?
    regFlag dd ?
    regEsp dd ?
    regSs dd ?
  • ;----------------------------------------------------------------------------------------------------------
    ; This section is returned if ContextFlags contains the value CONTEXT_EXTENDED_REGISTERS
  • ;-----------------------------------------------------------------------------------------------------------
  • ExtendedRegisters db MAXIMUM_SUPPORTED_EXTENSION dup(?) CONTEXT ENDS

    As you can observe, the members of this structures are mimics of the real processor's registers. Before you can use this structure, you need to specify which groups of registers you want to read/write in ContextFlags member. For example, if you want to read/write all registers, you must specify CONTEXT_FULL in ContextFlags. If you want only to read/write regEbp, regEip, regCs, regFlag, regEsp or regSs, you must specify CONTEXT_CONTROL in ContextFlags.

    One thing you must remember when using the CONTEXT structure: it must be aligned on dword boundary else you'd get strange results under NT. You must put "align dword" just above the line that declares it, like this:

    align dword
    MyContext CONTEXT <>

Example:

The first example demonstrates the use of DebugActiveProcess. First, you need to run a target named win.exe which goes in an infinite loop just before the window is shown on the screen. Then you run the example, it will attach itself to win.exe and modify the code of win.exe such that win.exe exits the infinite loop and shows its own window.

.386
.model flat,stdcall
option casemap:none
include masm32includewindows.inc
include masm32includekernel32.inc
include masm32includecomdlg32.inc
include masm32includeuser32.inc
includelib masm32libkernel32.lib
includelib masm32libcomdlg32.lib
includelib masm32libuser32.lib

.data
AppName db "Win32 Debug Example no.2",0
ClassName db "SimpleWinClass",0
SearchFail db "Cannot find the target process",0
TargetPatched db "Target patched!",0
buffer dw 9090h

.data?
DBEvent DEBUG_EVENT <>
ProcessId dd ?
ThreadId dd ?
align dword
context CONTEXT <>

.code
start:
invoke FindWindow, addr ClassName, NULL
.if eax!=NULL
    invoke GetWindowThreadProcessId, eax, addr ProcessId
    mov ThreadId, eax
    invoke DebugActiveProcess, ProcessId
    .while TRUE
       invoke WaitForDebugEvent, addr DBEvent, INFINITE
       .break .if DBEvent.dwDebugEventCode==EXIT_PROCESS_DEBUG_EVENT
       .if DBEvent.dwDebugEventCode==CREATE_PROCESS_DEBUG_EVENT
          mov context.ContextFlags, CONTEXT_CONTROL
          invoke GetThreadContext,DBEvent.u.CreateProcessInfo.hThread, addr context           
          invoke WriteProcessMemory, DBEvent.u.CreateProcessInfo.hProcess, context.regEip ,addr buffer, 2, NULL
          invoke MessageBox, 0, addr TargetPatched, addr AppName, MB_OK+MB_ICONINFORMATION
       .elseif DBEvent.dwDebugEventCode==EXCEPTION_DEBUG_EVENT
          .if DBEvent.u.Exception.pExceptionRecord.ExceptionCode==EXCEPTION_BREAKPOINT
             invoke ContinueDebugEvent, DBEvent.dwProcessId,DBEvent.dwThreadId, DBG_CONTINUE
             .continue
          .endif
       .endif
       invoke ContinueDebugEvent, DBEvent.dwProcessId, DBEvent.dwThreadId, DBG_EXCEPTION_NOT_HANDLED
   .endw
.else
    invoke MessageBox, 0, addr SearchFail, addr AppName,MB_OK+MB_ICONERROR .endif
invoke ExitProcess, 0
end start

;--------------------------------------------------------------------
; The partial source code of win.asm, our debuggee. It's actually
; the simple window example in tutorial 2 with an infinite loop inserted
; just before it enters the message loop.
;----------------------------------------------------------------------

......
mov wc.hIconSm,eax
invoke LoadCursor,NULL,IDC_ARROW
mov wc.hCursor,eax
invoke RegisterClassEx, addr wc
INVOKE CreateWindowEx,NULL,ADDR ClassName,ADDR AppName, WS_OVERLAPPEDWINDOW,CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL, hInst,NULL
mov hwnd,eax
jmp $ <---- Here's our infinite loop. It assembles to EB FE
invoke ShowWindow, hwnd,SW_SHOWNORMAL
invoke UpdateWindow, hwnd
.while TRUE
   invoke GetMessage, ADDR msg,NULL,0,0
   .break .if (!eax)
   invoke TranslateMessage, ADDR msg
   invoke DispatchMessage, ADDR msg
.endw
mov eax,msg.wParam
ret
WinMain endp

Analysis:

invoke FindWindow, addr ClassName, NULL

Our program needs to attach itself to the debuggee with DebugActiveProcess which requires the process Id of the debuggee. We can obtain the process Id by calling GetWindowThreadProcessId which in turn needs the window handle as its parameter. So we need to obtain the window handle first.
With FindWindow, we can specify the name of the window class we need. It returns the handle to the window created by that window class. If it returns NULL, no window of that class is present.

.if eax!=NULL
    invoke GetWindowThreadProcessId, eax, addr ProcessId
    mov ThreadId, eax
    invoke DebugActiveProcess, ProcessId

After we obtain the process Id, we can call DebugActiveProcess. Then we enter the debug loop waiting for the debug events.

       .if DBEvent.dwDebugEventCode==CREATE_PROCESS_DEBUG_EVENT
          mov context.ContextFlags, CONTEXT_CONTROL
          invoke GetThreadContext,DBEvent.u.CreateProcessInfo.hThread, addr context           

When we get CREATE_PROCESS_DEBUG_INFO, it means the debuggee is suspended, ready for us to do surgery upon its process. In this example, we will overwrite the infinite loop instruction in the debuggee (0EBh 0FEh) with NOPs ( 90h 90h).
First, we need to obtain the address of the instruction. Since the debuggee is already in the loop by the time our program attached to it, eip will always point to the instruction. All we need to do is obtain the value of eip. We use GetThreadContext to achieve that goal. We set the ContextFlags member to CONTEXT_CONTROL so as to tell GetThreadContext that we want it to fill the "control" register members of the CONTEXT structure.

          invoke WriteProcessMemory, DBEvent.u.CreateProcessInfo.hProcess, context.regEip ,addr buffer, 2, NULL

Now that we get the value of eip, we can call WriteProcessMemory to overwrite the "jmp $" instruction with NOPs, thus effectively help the debuggee exit the infinite loop. After that we display the message to the user and then call ContinueDebugEvent to resume the debuggee. Since the "jmp $" instruction is overwritten by NOPs, the debuggee will be able to continue with showing its window and enter the message loop. The evidence is we will see its window on screen.

The other example uses a slightly different approach to break the debuggee out of the infinite loop.

.......
.......
.if DBEvent.dwDebugEventCode==CREATE_PROCESS_DEBUG_EVENT
   mov context.ContextFlags, CONTEXT_CONTROL
   invoke GetThreadContext,DBEvent.u.CreateProcessInfo.hThread, addr context
   add context.regEip,2
   invoke SetThreadContext,DBEvent.u.CreateProcessInfo.hThread, addr context
   invoke MessageBox, 0, addr LoopSkipped, addr AppName, MB_OK+MB_ICONINFORMATION
.......
.......

It still calls GetThreadContext to obtain the current value of eip but instead of overwriting the "jmp $" instruction, it increments the value of regEip by 2 to "skip over" the instruction. The result is that when the debuggee regains control , it resumes execution at the next instruction after "jmp $".

Now you can see the power of Get/SetThreadContext. You can also modify the other register images as well and their values will be reflected back to the debuggee. You can even insert int 3h instruction to put breakpoints in the debuggee process.


Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:14,562.50000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号