基于联结主义的连续记分IRT模型的项目参数和被试能力估计
(2)步骤2:建立能力训练模式
用“第二矩阵”中的每一行作为一个模式的输入,其相应的25个第二组被试的能力值作为输出,组成能力训练模式,对一组神经网络(共30个,称为第一组神经网络)进行训练。
(3)步骤3:建立能力测试模式并进行测试
将“第一矩阵”中的每一行作为一个模式的输入,相应的第一组被试的25个能力值作为输出,组成能力测试模式,用上述经过训练的第一组神经网络对其进行测试。这时,实际上是神经网络对第一组被试的能力值进行估计。然后,将估计值和真实值进行比较,记录下测试误差,如表1左边第1列所示,要注意的是,表中记录的是30个网络的测试误差实际值,根据公式可见,它是所有输出结点和所有测试模式的误差总和。由于本研究中只有一个输出结点,有25个测试模式(因为有25个被试),因此要将表中的测验误差实际值除以25,得到对单个测试模式的测试误差,然后,再计算其平均数M和标准差SD,结果如表2所示,可以看出测试误差是比较小的。由此可见,当测试模式中有部分项目(本例中为15个项目)和训练模式相同时,经过训练的神经网络可以对被试的θ进行很好的估计。应该指出的是,测试模式和训练模式中没有被试是重复相同的,这说明经过训练的神经网络确实可以对新的被试进行能力估计。
表1 测试误差
θ a b c
0.129 2.239 2.982 0.065
0.084 1.843 2.976 0.056
0.243 2.016 2.798 0.069
0.324 1.804 2.133 0.058
0.126 2.159 2.556 0.027
0.201 2.224 2.399 0.067
0.288 2.246 2.617 0.043
0.114 1.741 2.834 0.065
0.189 1.937 2.347 0.076
0.249 2.295 2.745 0.092
0.264 2.319 2.433 0.065
0.321 2.382 2.030 0.044
0.105 2.136 2.231 0.093
0.132 2.061 2.244 0.023
0.153 2.019 2.868 0.068
0.279 2.270 2.042 0.044
0.204 2.196 1.850 0.099
0.102 1.950 2.597 0.059
0.105 1.732 1.709 0.089
0.282 1.764 2.328 0.072
0.228 2.281 2.556 0.114
0.256 2.089 1.961 0.071
0.222 2.445 2.002 0.093
0.210 1.666 2.243 0.035
0.138 1.743 2.441 0.075
0.201 2.438 2.034 0.080
0.171 1.740 2.100 0.106
0.246 2.307 2.594 0.069
0.195 1.577 2.535 0.057
0.213 2.436 2.199 0.057
(4)步骤4:建立项目参数训练模式
当估计项目参数时,将“第一矩阵”中的每一列作为一个模式的输入,因为每一列都代表所有被试对一个项目的反应情况,于是可以将与各列相应项目的a、b或c作为输出,组成项目参数训练模式,用该模式对一组神经网络(共30个,称为第二组神经网络)进行训练。
(5)步骤5:建立项目参数测试模式并进行测试
用蒙特卡罗方法产生15个项目(称为第三组项目)的参数a、b、c,并用原先已经产生的第一组被试的θ值对它们起反应,产生反应矩阵(称为“第三矩阵”)。然后,将“第三矩阵”中的每一列作为模式的输入,相应的15个项目的参数a、b或c作为输出,组成测试模式。用经过训练的第二组神经网络对其进行测试,也就是由神经网络对第三组项目进行参数估计,然后将估计值和真实值进行比较,记录下测试误差,如表1的2、3、4列所示。和对θ估计的测试误差一样,它是所有测试模式的误差之和。这里共有15个测试模式(即上述的第三组项目)。因此要把表1中的的2、3、4列数字除以15,再求平均数M和标准差SD,得到结果在表2中。
表2 单个模式测试误差的平均数和标准差
统计项 θ a b c
M 0.0027 0.1379 0.1586 0.0045
SD 0.0009 0.0174 0.0227 0.0015
4.4 减少项目参数的测试误差的实验
从表2的数据可以看出,上述方法对于θ的估计已经达到了较好的精
Tags:
作者:佚名评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论