单相电机变频调速技术综述
javascript:window.open(this.src);" style="cursor:pointer;"/>
3 控制技术
单相电机采用半桥逆变电路时,由于主电路结构类似,诸如SPWM和SVPWM等调速技术可以方便地移植到单相电机调速中来。以下讨论控制技术时,为了分析方便,均假设电机的两相绕组对称,即两相绕组相同,空间上相互垂直。同时假定正负电源对称,幅值恒定,中性点N不因电流I的注入而浮动。
3.1 半桥SPWM控制
单相电机采用SPWM控制技术时,javascript:window.open(this.src);" style="cursor:pointer;"/>由于要保证两相绕组中的电流相位差为90°,所以,两路调制信号的相位相应地也要设定为相差90°。SPWM控制的优点是谐波含量低,滤波器设计简单,容易实现调压、调频功能。但是,SPWM的缺点也很明显,即直流电压利用率低,适合模拟电路,不便于数字化方案的实现。半桥SPWM控制技术的研究已经相当成熟,有关的文献资料也比较多,在此不再做过多的分析。
3.2 半桥SVPWM控制[6]
依据电机学的知识可知,电压空间矢量同气隙磁场之间存在如下关系:
U=dφ/dt (4)
通过控制电压空间矢量来控制电机气隙磁场的旋转,所以SVPWM控制又称为磁链轨迹控制。
开关器件S1和S2,S3和S4的开关逻辑互补,则4只开关器件只能产生4个电压矢量。依据参考文献[6]的作图方法可得到图4所示的电压矢量图。
从矢量图来看,在两相半桥逆变电路中,不会产生零电压矢量。为了合成一个幅值为Uα,相角为α的电压矢量,在矢量分解时,其X轴的分量要有E1和E2共同完成,而Y轴分量要由E3和E4共同完成。
在一个开关周期T内,E1作用的时间为t1,则E2作用的时间为T-t1。E3作用的时间为t2,而E4作用的时间为T-t2。根据矢量分解可以得到式(5)和式(6)(矢量E1,E2,E3,E4的大小均为Ud/2)
javascript:window.open(this.src);" style="cursor:pointer;"/>
又因t1(t2)T,所以Ud/2。即半桥逆变电路在采用SVPWM控制时,输出相电压的最大值为Ud/2。
3.3 两相三桥臂全桥逆变SPWM控制[7]
采用SPWM控制时,由N1及N2构成的公共桥臂要同时接入电机的两相绕组中,所以在调制时,公共桥臂的调制波就不同于A及B桥臂的调制波。
整个逆变电路具体调制方法为:在载波相同的情况下,A及B相调制波为正弦波,相位上A相超前B相90°(电机正转,反之,B相超前A相90°,则电机反转);公共桥臂则采用恒定占空比的方法调制,上下桥臂占空比均为50%,如图5所示。
根据图示的电路工作波形,在一个开关周期内输出电压的平均值:
javascript:window.open(this.src);" style="cursor:pointer;"/>
在SPWM调制中,D=(1+msinωt),代入式(7)可得:(t)=mUdsinωt。当开关频率远大于输出电压频率时,输出电压的瞬时值uo(t)≈(t)。
如此在A及B绕组上得到幅值相等,相位相差90°的正弦电压。电压幅值与调制度m成正比。当m=1时,输出电压峰值达到最大,为Ud/2。依据电机的V/f曲线和输出电压与m的关系,即可实现两相电机的变压变频调速控制。
javascript:window.open(this.src);" style="cursor:pointer;"/>
3.4 两相三桥臂全桥逆变SVPWM控制[5]
逆变电路中,功率器件的每一种通电模式,都能在电机中生成一支空间电压矢量。对于两相三桥臂逆变电路,根据同一桥臂上下开关互补导通的原则,三个桥臂共产生8种开关组合模式,可以在电机绕组上得到8支空间电压矢量,它们以V(A,N,B)来表示。其中A=1时,表示A1导通,A2关断;A=0时,表示A1关断,A2导通,其余类推。8支矢量如表1所列。
表1 8支空间电压矢量关系组合
V | 非零矢量 |
| 零矢量 | 无用 | ||||
A | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
N | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
B | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
忽略绕组电阻压降时,非零电压矢量的幅值为
V(1,0,0)=V(0,0,1)
=V(0,1,1)=V(1,1,0)=Ud (8)
V(1,0,1)=V(0,1,0)=Ud(9)8支矢量中,两个零矢量位于坐标原点,其余6支根据绕组轴线以图6所示方式分布。电压空间矢量都可以由与之相邻的两个基本矢量和零矢量组合而成。矢量V(1,0,1)和V(0,1,0)在矢量合成时可有可无。为了计算的方便,只使用4只位于坐标轴上矢量和两只零矢量来合成电压空间矢量。(10)
javascript:window.open(this.src);" style="cursor:pointer;"/>
t0=T-t1-t2由t1+t2T,得Ud/,即输出相电压最大值为Ud/。
4 结语
1)单相电机逆变主电路的结构主要分为全桥和半桥两种。半桥电路结构简单,成本低廉,要求前级电源能稳定提供正负对称输出。
2)全桥逆变电路,由于两相三桥臂需要的开关器件相对较少,易于采用三相电路中六单元功率模块,比起8只开关器件组成的全桥逆变电路优势明显。
javascript:window.open(this.src);" style="cursor:pointer;"/>
3)半桥电路采用SPWM和SVPWM控制时,输出电压最大值相同;在全桥电路中,SVPWM的直流电压利用率比SPWM要高出41%。SVPWM控制易于数字化的实现,合理安排矢量作用顺序,能有效减小开关损耗。
4)从以上控制方案来看,普遍存在的问题为直流电压利用率较低。如何提升电压利用率是单相电机变频调速要克服的问题之一。单相电机的旋转磁场中存在有3次及5次等低频谐波,所以,在选用控制方案时要注意低频谐波的削弱。单相电机两套绕组垂直分布,彼此之间的互感接近于零,在采用更复杂的控制策略,如转矩直接控制时,会起到简化复杂程度的作用;同时,还可以利用两套绕组电流之和来确定磁场的位置,为电机气隙磁场的检测提供了一个有效、简便的途径。