低压CPLDEPM7512A的混合电压系统设计
② EPM7512A驱动5V TTL器件(直接相连)。由于 3.3V器件的VOH和VOL电平分别是2.4V和0.4V,5V TTL器件的VIH 和VIL 电平分别是2V和0.8V;而EPM512A 实际上能输出3V摆幅的电压,显然5V TTL器件能够正确识别EMP7512A的输入电平。
③ 5V CMOS器件驱动EPM7512A(直接相连)。分析5V CMOS的VOH 和VOL以及3.3V的VIH 和VIL 的转换电平可以看出,虽然两者存在一定的差别,但是能够承受5V电压的3.3V器件能够正确识别5V器件送来的电平值。所以能够承受5V电压的3.3V 器件的输入端可以直接与5V器件的输出端接口。EPM7512A有5V容限,故能直接与5V器件的输出端接口。
④ EPM7512A驱动5V CMOS(不能直接相连)。3.3V与5V CMOS的电平转换标准是不一样的。从表1中可以看出,3.3V输出的高电压的最低电压值VOH = 2.4V(输出的最高电压可以达到3.3V),而5V CMOS器件要求的高电平最低电压VIH = 3.5V,因此EMP7512A的输出不能直接与5V CMOS器件的输入相连接。为此必须做些处理。最通用的方法就是,使用电平接口转换芯片实现3.3V与5V电平的相互转换。可以采用双电压(一边是3.3V,另一边是5V)供电的双向驱动器来实现电平转换。如TI的SN74ALVC164245、SN74ALVC4245等芯片,可以较好地解决3.3V与5V电平的转换问题。对于5 V TTL 或者5 V CMOS器件,如果驱动3.3V(但无5V容限)的器件,就不能直接连接,而也可通过SN74ALVC16245来实现5V到3.3V的转换。对于EPM7512A驱动5V CMOS的情况还有个比较好的方法是,使输出口OC(集电极开路)输出,外面接一个电阻上拉到5V,这样就可以驱动5V CMOS器件了,只是逻辑反向了而已。
4 总 结
混合逻辑系统会在一个比较长的时间内存在。它的设计比较复杂,必须仔细分析其中的逻辑接口问题,否则容易使芯片烧毁或者逻辑失真。笔者在应用EEM7512A的过程中总结了这几种方法,对设计混合逻辑系统具有普遍意义。