用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

高速单片机硬件关键参数设计概述

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 23:50:30
驱动所需的缓冲延迟。

  时钟抖动(clock jitter),是由每个时钟周期之间不稳定性抖动而引起的。一般由于PLL在时钟驱动时的不稳定性引起,同时,时钟抖动引起了有效时钟周期的减小。

  串扰(crosstalk)。邻近的两根信号线,当其中的一根信号线上的电流变化时(称为aggressor,攻击者),由于感应电流的影响,另外一根信号线上的电流也将引起变化(称为victim,受害者)。

  SI是个系统问题,必须用系统观点来看。以下是将问题的分解。

◆ 传输线效应分析:阻抗、损耗、回流……

◆ 反射分析:过冲、振铃……

◆ 时序分析:延时、抖动、SKEW……

◆ 串扰分析

◆ 噪声分析:SSN、地弹、电源下陷……

◆ PI设计:确定如何选择电容、电容如何放置、PCB合适叠层方式……

◆ PCB、器件的寄生参数影响分析

◆ 端接技术等
javascript:window.open(this.src);" style="cursor:pointer;"/>
3 电源完整性PI

  PI的提出,源于当不考虑电源的影响下基于布线和器件模型而进行SI分析时所带来的巨大误差,相关概念如下。

◆ 电子噪声,指电子线路中某些元器件产生的随机起伏的电信号。

◆ 地弹噪声。当PCB板上的众多数字信号同步进行切换时(如CPU的数据总线、地址总线等),由于电源线和地线上存在阻抗,会产生同步切换噪声,在地线上还会出现地平面反弹噪声(简称地弹)。SSN和地弹的强度也取决于集成电路的I/O特性、PCB板电源层和地平面层的阻抗以及高速器件在PCB板上的布局和布线方式。负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。

◆ 回流噪声。只有构成回路才有电流的流动,整个电路才能工作。这样,每条信号线上的电流势必要找一个路径,以从末端回到源端。一般会选择与之相近的平面。由于地电平面(包括电源和地)分割,例如地层被分割为数字地、模拟地、屏蔽地等,当数字信号走到模拟地线区域时,就会产生地平面回流噪声。

◆ 断点,是信号线上阻抗突然改变的点。如用过孔(via)将信号输送到板子的另一侧,板间的垂直金属部分是不可控阻抗,这样的部分越多,线上不可控阻抗的总量就越大。这会增大反射。还有,从水平方向变为垂直方向的90°的拐点是一个断点,会产生反射。如果这样的过孔不能避免,那么尽量减少它的出现。

  在一定程度上,我们只能减弱因电源不完整带来的系列不良结果,一般会从降低信号线的串绕、加去耦电容、尽量提供完整的接地层等措施着手。

4 EMC

  EMC包括电磁干扰和电磁抗干扰两个部分。

  一般数字电路EMS能力较强,但是EMI较大。电磁兼容技术的控制干扰,在策略上采用了主动预防、整体规划和“对抗”与“疏导”相结合的方针。

  主要的EMC设计规则有:

① 20H规则。PowerPlane(电源平面)板边缘小于其与GroundPlane(地平面)间距的20倍。

② 接地面处理。接地平面具有电磁学上映象平面(ImagePlane) 的作用。若信号线平行相邻于接地面,可产生映像电流抵消信号电流所造成的辐射场。PCB上的信号线会与相邻的接地平面形成微波工程中常见的Micro-strip Line(微带线)或Strip Line(带状线)结构,电磁场会集中在PCB的介质层中,减低电磁辐射。

因为,Strip Line的EMI性能要比Micro-strip Line的性能好。所以,一些辐射较大的走线,如时钟线等,最好走成Strip Line结构。

③ 混合信号PCB的分区设计。第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天线;而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线。对于实在必须跨区的情况,需要通过,在两区之间加连接高频电容等技术。

④ 通过PCB分层堆叠设计控制EMI辐射。PCB分层堆叠在控制EMI辐射中的作用和设计技巧,通过合适的叠层也可以降低EMI。

从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨着电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

⑤ 降低EMI的机箱设计。实际的机箱屏蔽体由于制造、装配、维修、散热及观察要求,其上一般都开有形状各异、尺寸不同的孔缝,必须采取措施来抑制孔缝的电磁泄漏。一般来说,孔缝泄漏量的大小主要取决于孔的面积、孔截面上的最大线性尺寸、频率及孔的深度。

⑥ 其它技术。在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。问题的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是0.5mm(6mil),夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越

上一页  [1] [2] [3]  下一页

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:18,953.13000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号