用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心解决方案电子通信

可编程控制器在船舶减摇鳍随动系统中的应用

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 23:49:30
由于松下FP0系列PLC的PID命令不支持负数运算,所以随动系统控制部分采用自行设计的PD控制命令。每次程序启动前PLC都先自动对各主要寄存器清零,以消除程序启动时系统产生不必要的动作。另外由于松下FP0型号不提供小数运算,因此对无法整除的数据只能采用四舍五入的处理方法,比例系数只能设定成整数。为了克服这一缺点,程序先将存储于DT20中的指令信号与鳍角反馈信号的差值乘以一个十进制的系数(如K47),将得到的数值存储在DT30中,再将DT30中的数据除以一个十进制系数(如K10),这样最终得到的数据与DT20中的数值直接乘以4.7后的结果几乎完全相同,有时两者之间会存在一个很小的偏差,可以忽略不计。这样就解决了比例系数只能是整数的不足,更准确地实现了比例控制。

2.5 随动系统性能分析

系统软件设计完毕后,按要求安装,对各端口进行测试,确保可以正常工作后将系统启动。给设计完成的随动系统输入一个幅值为1V的阶跃信号,得到系统的单位阶跃响应如图4所示。

从图中可以看到,系统的最大超调量在2%以内,上升时间小于0.6s,过渡时间小于0.8s,暂态过程中的振荡次数为3。上述各项指标完全符合减摇鳍随动系统的工作要求。

除了良好的暂态品质以外,还要求足够的稳态控制精度5。稳态控制精度反映了对系统的稳态特性或控制的稳态精度的要求。对于恒值控制系统,在工作中如果给定值不变,要求输出量也不变,因此注意的是扰动量所引起的稳态误差;而对于随动系统,给定量以任意规律变化,则要求输出量以一定的精度跟随给定量变化,因此注意的是被控量和给定量之间的误差。在检测随动系统性能的实验中,输入的阶跃信号幅值为1V,系统的稳态输出为0.986V,稳态误差小于2%。上述各种指标均符合减摇鳍系统对随动系统的要求。
javascript:window.open(this.src);" style="cursor:pointer;"/>
    根据鳍角与鳍角反馈电压的比例关系图,将输入幅值在±0.9V之间变化的正弦信号作为指令信号,使减摇鳍在指令信号的控制下,在±10°之间来回摆动。保持指令信号的幅值不变,改变信号的频率,得到被控系统相应的幅值和相角。根据实验数据可以得到随动系统的幅频特性和相频特性,分别如图5和图6所示。需要注意的是,系统频率特性图中的横坐标不是通常使用的对数分度lgω,而是直接使用ω

观察随动系统的幅频特性图可以看出,系统在频率小于0.35Hz之前表现出了类似放大环节的特性,且此时系统的输出几乎没有任何明显变化,与角频率变化无关,非常准确地实现了指令信号的输出,系统非常稳定。从0.35Hz开始,随着频率的增大,系统的幅频特性和相频特性均发生了改变。从整个变化过程来看,系统表现出类似惯性环节的特性,因此可以将ω=0.35Hz近似地认为是系统的转折频率或交接频率。

与幅频特性相同,随动系统的相频特性图也显示出系统在ω=0.35Hz之前的相角滞后非常小,在5°以内,可以忽略不计。在0.35Hz之后相角发生了明显的变化,整个变化趋势也类似于一个惯性环节。但与典型的惯性环节不同,在所认为的转折频率ω=0.35Hz处,系统的相角没有滞后45°左右,系统也没有象典型惯性环节一样相移-arctgTω,与角频率ω表现出严格的反正切关系。

从整个系统表现出的幅频特性和相频特性来看,改造后的随动系统可以近似地认为是由一个放大环节与惯性环节串联组成,系统在频率小于0.35Hz的低频段表现出了较好的性能,符合减摇鳍系统对随动系统的要求,可以很好地工作。

由于PLC在软件和硬件上具有突出的优点,随动系统的稳定性和精度都有所提高,系统的安装和修改也更为简单方便。经过运行测试,改造后的随动系统符合设计要求,能够稳定运行,确保了船舶减摇鳍系统的正常工作。随动系统的改造完成后,将利用可编程控制器继续完成减摇鳍控制器的设计,从而形成一套完整的应用可编程控制器实现的船舶减摇控制系统。



上一页  [1] [2] 

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:5,703.12500 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号