基于FPGA的核物理实验定标器的设计与实现
3.3 FPGA功能模块仿真时序
在整个FPGA设计中,各单元模块都是经过严格的设计验证之后才继续上一层设计的。这里主要使用MAX PLUS II的TIMER进行波形仿真,来验证各子模块的功能,判断其时序是否满足要求。若时序稍有不对,甚至仅是小毛刺,也要立即更改输入设计。这样,设计的精度才高,系统工作才稳定。当每个模块最终都在时序上满足逻辑功能需求时,设计才能完成。图6为FPGA在MAX PLUS II环境下综合设计后的时序仿真波形图。
4 单片机软件设计
软件部分主要是单片机AT89C51对系统进行控制及相应的数据处理,整个控制流程如图7所示。
结束语
本文给出了一种用于核物理实验中的G-M计数装置定标器的新设计方案。此方案在传统的实验原理下,对旧仪器在电路和功能上做了较大程度的改进。在设计中采用EDA设计思想,以AT89C51单片机作为数据传输的控制核心,用Altera现场可编程逻辑器件(FLEX10K系列的FPGA)对核心计数部分电路进行效而灵活的集成,并在此基础上,扩展了数据的存储功能,增加了与PC机通信的RS232串行接口,从而更加智能化。
Tags:
作者:佚名评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论