基于VxWorks的bootrom代码改进
unzip_obj.o sysALib.o $(BSP_DIR)/unzip.o $(LIBS)flex.z.o
其中,unzip.c中包含构造的壳函数usrInit()。SysInit()为解压软件入口函数。上述语句的功能:第一行完成壳文件的编译,第二、三行完成壳目标代码与第二份bootrom代码的链接。这样,一个具有解压功能的壳函数就被链接到第二份bootrom映像中了。
javascript:window.open(this.src);" style="cursor:pointer;"/>
图1、图2是修改前的系统运行方式与修改后系统运行方式比较。
通过这两种方式的比较可以看出,修改前系统运行式与修改后的运行方式有下面两点差异;①第一份bootrom启动后,前者存在解压缩自射映像的操作,而后者没有;②对于第二份bootrom,前者没有壳代码,而后者有。
2.3 缩减文件长度
通常第一份bootrom代码只有两个文件,一个是包含CPU和SDRAM初始化文件romInit.s,另外就是包含romStart()函数的bootInit.c文件。另外,根据需要还可以添加提供串口轮询显示功能的文件。对于第一份bootrom代码,通常只有10KB左右(这是针对系统修改后的方式),而对于包含壳函数代码的,通过建立工程并编译而生成的第二份bootrom比较大,通常为570KB左右。(注意:这几个数值是通过特定的产品来得出的结论,并不应用于所有产品,但遇到类似的情况可以借鉴处理。)而其后面的一部分完全是0,可以考虑去掉这些0,但不能影响软件的功能。经过测试得出结论:去掉后面的0对系统功能和性能没有任何影响。
通过文件的操作来实现两份bootrom合并,合并后的大小要求小于或等于512KB。如果不采用任何措施,直接将两个文件合并起来要在580KB左右,大于512KB,这是很多系统不能满足的。第二份bootrom映像的后面部分的内容类似表1所列的信息。
表1 bootrom映像部分二进制内容
000 | 210h | EB | E2 | BD | 95 | BD | 15 | 87 | AE | 3C | 74 | FD | 5C | 5F | 6A | FD | 8B |
000 | 220h | D6 | BD | 3A | EB | FF | 6F | CF | 2A | D2 | 69 | 95 | E9 | 34 | AE | E7 | EF |
000 | 230h | 86 | 94 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
000 | 240h | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
000 | 250h | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
从表1可以看出,在地址0x00078233处就是0值了。这样可以通过对文件内容的操作将0x00078240后面的内容全部剔除,从而可将合并后的bootrom代码控制在512KB以内。当然,我们通常会选择一个整数值进行操作,即将0x0007824后的所有值去掉即可。
这样处理,可以减少维护和开发的工作量。如果按照以往的做法,bootrom软件对外将有第一份和第二份的区别,无论是生产、上层软件调试还是开发,都需要分别对待,这样维护量和开发量将会加大。而经过修改后,可把区别只控制在开发阶段,在线升级时,可以按照一个软件来通过串口或网口来进行升级。通过对bootrom最后生成文件大小的控制,可以简化生产流程,加快生产进度。
3 小结
在嵌入式操作系统中进行程序开发,需要经常开辟新的思路,以一些简单的实现方式代替复杂易错的方式。在本次产品开发过程中,将bootrom映像生成方式由惯用的GNU make命令行实现,修改为按照新建工程的方式来实现,是一个相对好的方法,对整个产品的后续批量生产、用户维护和后续开发都奠定了一个良好的基础。