一种基于AVR单片机的工频干扰滤除快速算法
4 采样时间的控制
采用单片机进行数字信号处理,一种有效而准确的数据采集方式就是通过计数器中断服务程序(ISR)控制AD对输入信号进行精确采样。但是(图2)中断服务程序(ISR)的开销影响了AD采样时间间隔的精确度,同时如果中断服务程序(ISR)的开销过大,必然导致AD的最高采样频率的降低。因此,要想获得精确的采样频率,就必须在尽量减少中断服务程序开销的前提下,适当调整计数器中断的时间间隔。这可以通过调整OCR0的预置数来完成。
5 算法流程图
滤波算法是通过中断服务程序(ISR)来完成的,整个应用程序的主函数main()主要负责初始化计数器中断,并处理其它应用。整个程序的流程图如图3所示。
本算法的C语言代码(附录A)经过AVR-GCC编译器的编译后,“.text”段只有310个字节,大大节省了单片机的flash空间。
javascript:window.open(this.src);" style="cursor:pointer;"/>
6 基于VMLAB的滤波系统仿真实现
VMLAB的全称为:Visual Micro Lab。它针对AVR系列单片机和ST62系列单片机设计,是一个单片机的虚拟原型框架,可以提供给用户一个真正意义上的虚拟微控制器(MCU)设计实验室。它具有强大的多窗口、多文件的编辑器,微控制器的集成开发环境,拥有一系列的集成开发工具,图形界面的调试器,混合模式的模拟-数字电路仿真器,代码质量检测器等。基于MCU,它可以仿真出包括模拟元器件在内的更多外围设备,并具有交互式器件模拟仿真功能。
假设有用信号2V大小的直流信号,工频干扰是峰峰值为1V,频率为50Hz的正弦波,建立单片机AD的输入信号表示形式如下:
2+0.5 sin(2π×50×t)
VMLAB通过工程文件来管理和控制各种仿真信息、硬件连接以及显示I/O电压波形等。根据本算法的特点,采用Atmega16作为目标单片机,时钟选为8MHz,建立工程文件。恰当设置OCR0等存储,使计数器比较匹配中断的时间间隔约为2ms,这样AD的采样频率Fs近似认为等于500Hz。经过仿真,对比结果如表3。
表3 Fs=500Hz时仿真结果对比
a | DA输出纹波峰峰值 | 衰减幅度 | DA输出均值 | 收敛时间 |
0.8 | 0.36V | -8.8dB | 1.99V | 约为100ms |
0.85 | 0.28V | -11.1dB | 1.99V | 约为120ms |
0.9 | 0.2V | -14dB | 1.98V | 约为145ms |
0.95 | 0.1V | -20dB | 1.95V | 约为210ms |
从表3可以看出:随着α的增大,算法收敛的时间变长,同时50Hz对应的衰减幅度增加,衰减的幅度值和理论推导基本一致。另外,当a=0.95时,DA输出的均值变小。这主要是进行循环迭代运算时,需要将16位的变量转化为8位表示形式所导致的。在有用信号失真较小的情况下,为使滤波器达到降低工频干扰的最佳效果,必须恰当选择a值。经过以上的仿真试验可以发现,当a=0.9时,衰减幅度、DA输出均值和算法收敛时间表现比较均衡,可以作为一般情况下的选择值。
javascript:window.open(this.src);" style="cursor:pointer;"/>
将AD的采样间隔设置为4ms,对应的采样频率Fs就变为250Hz,其它条件不变。通过VMLAB进行仿真,对比结果如表4、图5。
表4 Fs=250Hz时不同a值仿真结果对比
a | DA输出纹波峰峰值 | 衰减幅度 | DA输出均值 | 收敛时间 |
0.8 | 0.20V | -14.0dB | 1.98V | 约为220ms |
0.85 | 0.16V | -15.9dB | 1.98V | 约为240ms |
0.9 | 0.14V | -17.1dB | 1.97V | 约为270ms |
0.95 | 0.06V | -24.4dB | 1.95V | 大于500ms |
对比Fs=500Hz的情况,随着采样频率Fs降低,50Hz频率的幅度衰减值会逐渐增加。这主要是因为随着采样频率降低,低通滤波器的截至频率fc也随之降低,相应的滤波器在50Hz处的衰减也就越来越低。根据奈奎斯特低通采样定理,当采样频率小于100Hz时,由于信号频谱混叠,滤波器对50Hz信号的滤波效果将会变差。如果只是对缓变信号进行采样,采样频率比100Hz稍大即可。但是随着采样频率的降低,滤波算法的收敛时间也会增加。因此必须在算法的滤波性能和收敛时间上进行折衷考虑。
本文提出的分配系数法设计数字滤波器,算法速度快、代码效率高、滤波效果理想,是一种实用的数字滤波器设计方法,体现了将算法嵌入到具体硬件的思想。另一方面,将定点小数的表示形式进行适当扩展,这个算法还可以用于10位或16位AD转换精度的应用场合。