基于CPLD的系统中I2C总线的设计
2.2 IP核程序的编写
整个程序用VHDL语言编制,SCL输出时钟的设计是基于CLK输入时钟的64分频的。程序由三个状态组成:开始(START)、转换(SHIFT)和应答(ACK)。状态定义如下:
type states is startshiftack
signal my_states states
下面给出部分进程的源代码以供参考。
2.2.1开始信号的产生
PROCESSclk
if clk’event and clk=‘1’ then
TWCR<=DATAIN
SCL<=‘1’
else
TWCR<=others=>‘0’
end if
if TWCR=“10000000” then ——比较寄存器TWCR的开始
值设置(由用户决定)
STRB<=‘1’
end if
if STRB=‘1’ then ——开始条件
INT<=INT+“000001” ——INT为时钟脉冲计数
if INT<=“011000” then ——产生SDA的下降沿
SDA<=‘1’
else
SDA<=‘0’
end if
if INT>=“011110” then ——STRB归0,保证只产生
一次开始信号
STRB <=‘0’
INT<=“000000”
end if
end if
等所有的初始化数据传输完毕后即产生停止信号,过程与上面相类似,在此省略。
2.2.2 数据转换过程
数据转换过程采用移位传输,传输8位之后即进入应答状态。
when shift=>
if cnt=“010000” then ——cnt为clk脉冲计数,由
实际的时钟频率决定cnt的值
COUNT<=COUNT+“0001” ——COUNT为数据移位个
数计数MSR为移位寄存器
MSR<=MSR6 downto 0&txtag
txtag<=‘0’
if COUNT=“1000” then
my_states<=ack
TACK<=‘1’ ——TACK为应答标志位
else
SDA<=MSR7
my_states<=shift
TACK<=‘0’
end if
end if
图4 数据传输仿真波形 图5 SDA非应答时的仿真波形
2.2.3 数据输入
一般情况下,I2C总线传输的数据要由外部ROM或其它专门的数据存储区来存储,但在数据相对固定且数据量不是很大的情况下,可以将初始化的数据写在程序中,这样可减少频繁的数据交换,简化操作。AD9883的初始化数据就属于这种情况,可以通过检测应答信号来改变输入的值。程序如下:
PROCESSclk ——数据输入
if clk’event and clk=‘1’ then
CASE ackint IS ——ackint为应答计数,每应答
一次,输入改变一次
when “00000”=> DATAIN<=“10000000”
when “00001”=> DATAIN<=“01010010”
when “00010”=> DATAIN<=“11010000”
……
when “10010”=> DATAIN<=“00000000”
when “10011”=> DATAIN<=“00000000”
when others=> DATAIN<=“ZZZZZZZZ”
END CASE
end if
2.3 仿真结果
把自主开发的IP核置于MAX+PLUS II 10.0开发环境下,选用EPM3128ATC100-10器件,经过编译、调试与仿真,证明该程序符合设计要求。图4是模拟产生开始信号并传输两组二进制数据“10011001”和“10101010”(十进制表示为153和170)的仿真波形。图5是传输数据“10011001”后没有应答时的仿真结果,此时总线处于暂停状态。
仿真完成后,通过编程电缆将pof文件下载到实际电路的EPM3128ATC100-10中,然后对AD9883进行初始化,结果工作正常,这进一步验证了采用该自主开发的IP核完全可满足I2C总线的时序要求,能实现I2C总线的功能。