低功耗MSP430单片机在3V与5V混合系统中的逻辑接口技术
3 接口电路的有关参数
了解了3V器件为什么具有5V容限后,在MSP430与LSTTL、HCMOS、CMOS电路实现相互联接之间,要先了解各种电路和器件的参数,如表1所示。
表1 各种电路和器件参数
参数 电路 | 电源电压范围 | 输入电平 | 输出电平 | ||
V(V) | VIH(V) | VIL(V) | VOH(V) | VOL(V) | |
LSTTL | 4.5~5.5 | 2 | 0.8 | 2.7 | 0.4 |
CMOS | 3~18(取Vcc=5) | 3.5 | 1.5 | 4.5 | 0.5 |
HCMOS | 2~6 | 3.5 | 1 | 5.2 | 0.4 |
MSP430 | 1.83.6 | 0.8Vcc | 0.2Vcc | Vcc-0.6 | 0.6 |
ALVT系列 | 3.3或2.5 | 1.7 | 0.8 | 2.0 | 0.2~0.55 |
LVC系列 | 1.65~5.5 | 0.7Vcc | 0.3Vcc | 2.7~5.5 | 0.1~0.55 |
4 接口实现
不同电源电压的逻辑器件相互接口时存在的主要问题是逻辑信号电平的配合问题,就是前级电路输出的电平要满足后级电路对输入电平的要求。此外还有负载电流的配合问题,即前级电路的输出电流应大于后级电路对输入电流的要求,同时不应造成器件损坏。还有就是在高速或有严重干扰的场合,必须考虑接口对系统和抗干扰性能带来的不良影响。这里主要讨论逻辑信号电平的配合问题。因为对于负载电流配合问题只是一个带负载能力。而抗干扰问题则用本文中提到的方法都可以忽略。
4.1 LSTTL-MSP430
如表1所示,LSTTL电路的高电平输出电压VOH约为2.7V,MSP430的高电平输入约为0.8VCC,LSTTL电路的低电平输出电压VOL约为0.4V,MSP430的低电平输入电压VIL的0.2VCC。如果0.8Vcc小于2.7V且0.2Vcc大于0.4V时,不存在逻辑信号电平的配合问题,可以直接连接。如果0.8Vcc大于2.7V或0.2Vcc小于0.4V时,就出现了逻辑信号电平的配合问题。为了增大LSTTL电路的输出高电平,利用TI公司的LVC系列。从表1中可以看到LVC系列产品的高电平输出电压和低电平输出电压都符合要求。
javascript:window.open(this.src);" style="cursor:pointer;"/>
4.2 CMOS-MSP430
在接口时使CMOS和MSP430使用同一电源,例如3V电源可以直接驱动。如果实际情况不允许,则根据1表,通过ALVT系列的器件就可以实现CMOS驱动MSP430。
4.3 HCMOS-MSP430
同上述CMOS分析一样,同样选用ALVT来驱动MSP430。
4.4 MSP430驱动LSTTL、CMOS和HCMOS
MSP430的输出引脚(P0.x、P1.x、P2.x、P3.x、P4.x、Oy)都有规定的外接电阻。外接电阻的大小取决于电源电压Vcc的大小。如果输出电流比规定的要大,就需要输出驱动器。图7所示为限制MSP430输出电流的电阻最小值。设计以Vcc=3V,通过这些器件可以驱动需要大电流的LSTTL、HCMOS和CMOS电路接口。javascript:window.open(this.src);" style="cursor:pointer;"/>
5 两种电平移位器件
5.1 双电源电平移位器74LVC4245
74LC4245是一种双电源的电平移位器,如图8所示。5V端用5V电源作为Vcc(A),而3V端则用3V作为Vcc(B)。它的功能类似于常用的收发器74LVC245,所不同的是用两个电源而不是一个电源。74LVS4245的电平移位在其内部进行。双电源能保证两边端口的输出摆幅都能达到满电源幅值,并且有很好的噪声抑制性能。因此该器件用来驱动5V CMOS器件是很理想的。缺点是增加了功耗。
较为简单的一种电平移位器件是74LVC07。它使用一个漏极开路缓冲器去驱动5V CMOS器件,如图9所示。它的输出端出一个上拉电阻R接到5V电源。
低功耗MSP430与LSTTL、HCMOS和CMOS器件共存于一个系统中,这种情况将在相当长的时间。在设计这种系统时要分析其中逻辑器件的接口问题,保证所设计的电路在不同电压器件间数据传输的可靠性。