基于DDS技术的智能超声波功率源的研制
在功率超声设备中,发生器与换能器的匹配设计非常重要,在很大程度上决定了超声设备能否正常、高效地工作。超声波发生器与换能器的匹配包括两个方面:阻抗匹配和调谐匹配。匹配电路如图6虚线框中所示,半桥逆变输出经变压器耦合后通过电感连接到换能器上,匹配设计即为输出变压器和匹配电感的设计。
阻抗匹配使换能器的阻抗变换为最佳负载,即起阻抗变换作用。在电源电压给定的条件下,电源输出的功率大小主要取决于等效负载阻抗。本文的半桥功率放大器与串联电压开关型D类功率放大器原理相同,晶体管都工作在开关状态,一般变压器初级等效负载RL′,上的输出功率表达式为:
javascript:window.open(this.src);" style="cursor:pointer;"/>
本文采用48V开关电源给半桥电路供电。根据实验需要,希望功率源输出功率为1500W,换能器采用多个并联的方式,等效阻抗RL约0.5Ω,由公式n/m=RL/RL′(m、n分别为变压器初、次级匝数)可以计算出输出变压器的匝数比n/m=3。
2.3.2 调谐匹配
调谐匹配使换能器两端的电压和电流同相,从而使效率最高,同时串联谐振可以提高换能器两端电压,有利于对压电换能器激励。由于压电换能器存在静电电容C0,在换能器谐振状态时,换能器上的电压VRL与电流IRL间存在着一相位角ψ,其输出功率P0=VRLIRLcosψ。由于ψ的存在,输出功率达不到最大值,要使电压VRL与电流IRL同相,可通过在换能器上并联或串联一个电感乙。来实现。
需要指出,换能器的相关参数皆在小信号状态下测得,与高电压下的实际应用有所差异,需要在实际工作中进行实验调节。
经过调谐匹配,换能器在超声功率源驱动下达到谐振。图7为用TDS1002示波器采集的换能器的激励电压波形(因量程所限,图示为正半周)。可见获得了纯净的正弦波,其峰—峰值接近1000V。
3 系统软件设计
软件设计主要是对单片机进行编程,实现LED显示、键盘输入、调节AD9850输出频率等控制。程序流程如图8所示。根据需要还要对单片机进行编程实现系统的智能控制,如扫描输出、输出定时等多种功能。