2.4GHzDECT技术体系与实现方法
3.1 LMX3162 RF接收/发送芯片
LMX3162芯片是座机和手机的IF/RF Transceiver,符合ESTI 300 175-2(PHL:Physical Layer)技术标准。采用2.4GHz FHSS技术,将从基带信号处理器来的数字FSK调制信号,通过高斯滤波器(BT=0.5),加到VCO和Synthesizer(PLL)上,同时基带信号处理器产生的跳频控制信号控制在2.4~2.485GHz频段中VCO产生的载波频率,形成2.4GHz ISM的GFSK已调FHSS信号,输出到功率放大器经TDD开关和天线发射出去。接收时,经TDD开关和天线后,通过VCO和PLL,将2.4GHz ISM的GFSK已调FHSS信号下变频后,传输到基带信号处理器。
在LMX3162芯片中,为了简化电路、降低成本,不采用AGC和AFC。采用限幅器,对大信号进行限幅处理,小信号则必须在允许接收信号的电平之上。至于AFC可采用频率稳定度在1ppm左右的晶体振荡器,通过提高晶体振荡器的频率稳定度来替代AFC控制电路。
FHSS采用发送接收双方事先约定的跳频图案,用100Hz 0.5~2.25VDC电压提供给VCO,通过电压的变化使VCO产生2.402~2.4835GHz的≥79个中心频率;相对而言,其Synthesis(同步器)采用Direct Digital Synthesis(DDS),由VCO和PLL组成,参考频率13.824MHz。接收IF频率为110.592MHz(13.824MHz×8=110.592MHz),BW=650kHz。
图4 DECT系统的框图
3.2 SC14428基带信号处理器芯片
SC14428芯片是BS和PH的基带信号处理器,符合ESTI 300 175-2,3(MAC)技术标准,采用CSMA-CA接入控制协议。其内置16位CR16控制器和16位DSP以及ROM、SRAM、Flash Memory、8-bit ADC等,完成32kbps ADPCM编解码、CID、DTMF、RSSI(接收信号强度指示)、TDMA/TDD帧和数字FSK调制解调等功能,具有UART、SPI和ISDN等接口,可方便地与键盘、LCD、Speaker和MIC相连,满足人机界面(MMI)开发和设计的要求。芯片的TXDATA输出为1Vpp NRZ FSK(调制系数=0.32)已调数据,数据率1152kbps/载频。芯片的VTUN为100Hz 0.5~2.25VDC电压提供给1.2~1.24GHz的VCO,使VCO产生所需的频率。
接收端RXDATA接收0~3V的FSK信号,FSK解调采用常用的积分检波技术,鉴相器的输出电压正比于输入FSK信号的瞬时频率。这样就完成了频率-幅度的转换,实现了对FSK信号的解调。
同步VCO采用DC控制。从防护频带边沿开始到有效时隙的465μs为同步锁定时间。SC14428芯片通过串行线将控制数据写入RFIC芯片的寄存器,并读取其状态寄存器的内容。
BMC包括两个主逻辑区:SRAM和寄存器。SRAM用于存储系统参数和A-field(Data)、B-field(Speech)数据,时隙控制参数和加解密编码;寄存器中的数据直接用于对硬件系统的控制或存放系统状态信息。
3.3 协议软件体系
协议软件结构框图如图5所示。L1层软件主要完成物理层的控制以及部分MAC层的功能:选择和动态分配物理信道,低层设备驱动程序,包括对基带信号处理芯片的控制等。L2层软件主要完成DLC层和网络层的功能:负责在基站和手机之间的双向数据传输,提供差错控制功能,负责呼叫控制和移动管理。L3层软件主要完成应用层功能:实现产品的各种功能及其用户接口,如人机界面(MMI)软件。MMI软件主要提供手机的全面控制和手机与用户之间的接口,包括用户键盘输入、手机状态和呼叫处理过程显示、Caller ID和电子簿的管理、PIN码的控制、拨号等。
软件流程基于消息驱动的机制,各层发出的消息由资源管理软件管理,根据任务发送到目标层处理,同时也负责对系统资源的分配和管理。
3.4 软件设计方法
软件设计要实现的基本功能是普通电话机与手机、座机无线通信的功能。要设计好软件应首先考虑两个主要问题:
·要求软件设计者对DECT系统有比较深刻的认识;
·DECT系统的许多事件需要实时处理,且要持续一段时间。不少事件在时间上有可能是重叠的,需要同时处理,例如信令码的收与发可能是并行发生的,振铃检测、信令传输、振铃呼叫是要并行处理的,键盘扫描、信令传输、脉冲或DTMF发号也需并行处理。而对诸如此类的实时并发事件,与通常的软件设计方法不同。
为此,软件设计应引入实时多任务控制系统的概念。实施多任务并行处理的常用方法是分时操作。分时操作就是将整个MCU运行期划分为许多均匀的时隙。每个时隙由MCU的定时中断控制。其主要任务可分为:系统初始化、系统资源的分配和管理、建立物理链路和数据发送、接收等。DECT软件重要的是设计资源管理软件,负责对系统资源的分配和管理,给每个任务分配执行时隙,安排各个任务间的转换。一个任务可能在许多不连续的时隙里执行完成。若一个时隙相对于任务的变化来说非常短,那么不连续执行与连续执行的效果完全一样,而其间的其它时隙可分配给其它任务,这样就达到了多任务并行执行的效果。javascript:window.open(this.src);" style="cursor:pointer;"/>
资源管理软件对任务的处理是在消息的驱动下,触发定时中断后被激活,执行任务的分配和管理。但资源管理软件对任务的处理是根据其优先级执行的,保证对任务实时处理。一般任务按类型可分为:(1)意外突发性;(2)周期性检测或控制;(3)实时事件的后台处理。第(1)类任务优先级最高,第(3)类任务优先级最低。因此L1层软件、L2层软件和L3层软件在资源管理软件的作用下,通过消息的驱动和对任务的目标管理将各层软件连接起来,同步协调工作。
综上所述,开发基于2.4GHz DECT技术的数字无绳电话,DECT软件设计的技术难度较高。由于2.4GHz DECT系统采用TDMA/TDD接入方式,在设计中也要解决突发模式工作下系统供电能力和频率稳定性、帧同步和回声消除等比较突出的问题。
在2.4GHz DECT实现方法上可对各芯片公司解决方案进行分析与研究,在硬件上采用芯片组解决方案;在软件上,可采用先从系统方案供应商或软件公司购买协议栈软件,由开发用户自己用C语言编写MMI软件完成数字无绳电话技术开发;在积累一定开发经验的基础上,可自行开发针对某一芯片组的协议软件。