一种基于七号信令的局间话单采集系统研究与应用
E1电路经高阻跨接侦听后,其信号强度已经大大减弱,为使信号可以被正常接收,就必须将信号放大,七号信令话单采集系统的数字交叉连接设备将上述两种功能整合在一起,其主要的信号流程如图2所示。
数字交叉连接设备所处理的功能详述如下:
(1)软件配置的E1信号放大比例:提供0~20dB的信号放大能力,使其能够与大到3500Ω的高阻跨接器件的配合,并且放大的比例可以由配置软件修改。
(2)软件配置的E1阻抗匹配:该设备可以通过配置软件,按需要选择75Ω或120Ω的阻抗,与接入的E1相匹配。
(3)低延时的无阻塞交换网络:数字交换连接设备可以实现256×256的无阻塞交换,即能将8条输入E1的任何一个时隙小于12μs,在最坏的情况下也小于125μs。数字交换连接设备中时隙的连接方式可以由软件配置。
(4)主时钟的选择:通过软件配置,该设备可在8个E1中选择其中的一个作为主时钟。当用户选择的主时钟E1失效时,系统会自动选择另一个有效的E1作为设备的主时钟源,而一旦用户选择的主时钟E1恢复时系统将把主时钟源切换回来。时钟源的切换时延小于1ms。
七号信令链路的跨接点可能分布在各个机房,而每个机房中只有少量的几条七号信令链路,因此通常在每个机房中只会使用到较小容量的交换网络。大的机房可能有很多条七号信令链路,这时只需简单地将多台数字交叉连接设备组成一个二级的交换网络即能满足要求。例如图3中用5台数字交叉连接设备组成的二级交换网络,将分布在36根E1中的18条七号信令链路收敛到两条E1中。
2.3 七号信令分析系统
七号信令分析系统主要完成31条七号信令链路消息的采集功能。
它根据用户定义的筛选条件过滤掉与计费无关的七号信令消息,并为每一条满足过滤条件的七号信令消息打上时标,最后将这些消息打成TCP/IP包,通过10M以太网传给详细话音生成软件。该系统在硬件上分为:七号信令分析设备和GPS授时系统。限于篇幅的原因,这里不详细介绍其技术实现。其主要的信号流程如图4所示。javascript:window.open(this.src);" style="cursor:pointer;"/>
3 系统性能测试
系统在信息产业部电信传输研究所RTNET实验室测试中,利用一台七号信令大话务量呼叫模拟器A模拟一个发端交换局,连接到中兴程控交换机,再汇接到另一台一号信令大话务量呼叫模拟量呼叫模拟器B模拟一个收端交换局。发端局和汇接局间有4对E1中继,每对E1中有30条话路,第一对E1中有1条七号信令链路,因此两个局之间共有1条七号信令链路和120条话路。大话务量模拟器A作为发话方,在每个话路上按所设时长产生一次呼叫,并记录成功的呼叫次数。被测试系统高阻跨接在发端局和汇接局之间的第一条E1上,经过数字交叉连接设备的输出接口采集七号信令消息,以TCP/IP数据包的形式,通过10M以太网传送到详细话单生成服务器生成详细话单,与呼叫模拟器统计的话单进行比对,检查被测系统生成话单的准确性。
为了衡量其处理31条七号信令链路能力,检查“七号”信令分析系统”在单位时间内可以处理的七号信令消息的数量,并保证系统在高信令负荷下不会遗漏七号信令消息。需要在七号信令消息分析模块上接入31条七号信令链路,并逐步增加这些七号信令链路上的负荷,达到呼叫模拟器最大呼叫数量。该项测试采用了如下等效的方法,利用“数字交叉连接设备”将一个输入时隙同时交换到多个不同的输出时隙的功能,可以将上述的1条七号信令链路的消息复制31份,从而在31条链路上产生朵的信令负荷,输入到七号信令消息分析模块进行消息处理。
由于七号信令话单采集系统采用监测七号信令链路的工作方式,必须保证不影响局间信令链路的前提下跨接,因此要对高阻跨接设备的物理特性进行测试,检查其是否对原链路引入误码,同时是否对本身引入误码。
随着电信行业的进一步改革以及中国加入WTO,电信行业间的网间结算成为各电信企业倍加重视的问题。该系统鉴于目前网间结算的话单采集存在着实时性差、采集点分散、过分依赖于交换机提供的接口、可靠性差以及结算欠准确等不足,设计的一套大容量话单采集系统——七号信令话单采集系统(GSS07)。采用一种崭新的话单采集方式,具有技术先进、实时性高、容量大、安全性好、运行稳定等特点,实验证明其有效地解决了局间话单采集问题,非常适合电信企业的需要,可以被广泛应用于网间结算、长途结算、话务分析以及核帐对单系统。