<<展现C#>> 第七章 异常处理(修订)
第七章 异常处理
通用语言运行时(CLR)具有的一个很大的优势为异常处理是跨语言被标准化的。一个在C#中所引发的异常可以在Visual Basic客户中得到处理。不再有 HRESULTs 或者 ISupportErrorInfo 接口。
尽管跨语言异常处理的覆盖面很广,但这一章完全集中讨论C#异常处理。你稍为改变编译器的溢出处理行为,接着有趣的事情就开始了:你处理了该异常。要增加更多的手段,随后引发你所创建的异常。
7.1 检查和非检查语句(checked and unchecked statements)
当你执行运算时,有可能会发生计算结果超出结果变量数据类型的有效范围。这种情况被称为溢出,依据不同的编程语言,你将被以某种方式通知――或者根本就没有被通知。(C++程序员听起来熟悉吗?)
那么,C#如何处理溢出的呢? 要找出其默认行为,请看我在这本书前面提到的阶乘的例子。(为了方便其见,前面的例子再次在清单 7.1 中给出)
清单 7.1 计算一个数的阶乘
1: using System;
2:
3: class Factorial
4: {
5: public static void Main(string[] args)
6: {
7: long nFactorial = 1;
8: long nComputeTo = Int64.Parse(args[0]);
9:
10: long nCurDig = 1;
11: for (nCurDig=1;nCurDig <= nComputeTo; nCurDig++)
12: nFactorial *= nCurDig;
13:
14: Console.WriteLine("{0}! is {1}",nComputeTo, nFactorial);
15: }
16: }
当你象这样使用命令行执行程序时
factorial 2000
结果为0,什么也没有发生。因此,假定C#默默地处理溢出情况而不明确地警告你是安全的。
通过对整个应用程序(经编译器开关)或在语句级允许溢出检查,你就可以改变这种行为。以下两节分别解决一种方案。
7.1.1溢出检查的编译器设置
如果你想控制整个应用程序的溢出检查,C#编译器设置选项正是你所要找的。默认地,溢出检查是禁用的。要明确地请求它,运行以下编译器命令:
csc factorial.cs /checked+
现在当你用2000参数执行应用程序时,CLR通知你溢出异常(见图 7.1)。
图 7.1 允许了溢出异常,阶乘代码产生了一个异常。
按确定键离开对话框出现了异常信息:
Exception occurred: System.OverflowException
at Factorial.Main(System.String[])
现在你了解了溢出条件引发了一个 System.OverflowException异常。下一节,在我们完成语法检查之后,如何捕获并处理所出现的异常?
7.1.2 语法溢出检查
如果你不想对整个应用程序进行溢出检查,那么只允许对某些代码段进行检查便可,这样可能会很顺畅。在这种场合下,你可能象清单7.2中显示的那样使用检查语句。
清单 7.2 阶乘计算中的溢出检查
1: using System;
2:
3: class Factorial
4: {
5: public static void Main(string[] args)
6: {
7: long nFactorial = 1;
8: long nComputeTo = Int64.Parse(args[0]);
9:
10: long nCurDig = 1;
11:
12: for (nCurDig=1;nCurDig <= nComputeTo; nCurDig++)
13: checked { nFactorial *= nCurDig; }
14:
15: Console.WriteLine("{0}! is {1}",nComputeTo, nFactorial);
16: }
17: }
纵使你运用标志 checked- 编译了该代码,在第13行中,溢出检查仍然会对乘法实施检查,因为checked 语句已经括住了它。将会出现相同的错误信息。
显示相反行为的语句是unchecked 。甚至如果允许了溢出检查(给编译器加上checked+标志),被unchecked 语句所括住的代码也将不会引发溢出异常:
unchecked
{
nFactorial *= nCurDig;
}
7.2 异常处理语句
既然你知道了如何产生一个异常(你会发现更多的方法,相信我),仍然存在如何处理它的问题。如果你是一个 C++ WIN32 程序员,肯定熟悉SEH(结构异常处理)。令人感到欣慰的是,C#中的命令几乎是相同的,而且它们也以相似的方式运作。
以下三节介绍了C#的异常处理语句:
。用 try-catch 捕获异常
。用try-finally 清除异常
。用try-catch-finally 处理所有的异常
7.2.1 使用 try 和 catch捕获异常
你肯定会对一件事非常感兴趣――不要给用户提示那些令人讨厌的异常消息,以便你的应用程序继续执行。要这样,你必须捕获(处理)该异常。
要用到的语句是try 和 catch。try包含可能会产生异常的语句,而catch处理一个异常,如果有异常存在的话。清单7.3 用try 和 catch为OverflowException 实现异常处理。
清单7.3 捕获由 Factorial Calculation引发的OverflowException 异常
1: using System;
2:
3: class Factorial
4: {
5: public static void Main(string[] args)
6: {
7: long nFactorial = 1, nCurDig=1;
8: long nComputeTo = Int64.Parse(args[0]);
9:
10: try
11: {
12: checked
13: {
14: for (;nCurDig <= nComputeTo; nCurDig++)
15: nFactorial *= nCurDig;
16: }
17: }
18: catch (OverflowException oe)
19: {
20: Console.WriteLine("Computing {0} caused an overflow exception", nComputeTo);
21: return;
22: }
23:
24: Console.WriteLine("{0}! is {1}",nComputeTo, nFactorial);
25: }
26: }
为了说明清楚,我扩展了某些代码段,而且我也保证异常是由checked 语句产生的,甚至当你忘记了编译器设置时。
正如你所见,异常处理并不麻烦。你所有要做的是:在try语句中包含容易产生异常的代码,接着捕获异常,该异常在这个例子中是OverflowException类型。无论一个异常什么时候被引发,在catch段里的代码会注意进行适当的处理。
如果你不事先知道哪一种异常会被预期,而仍然想处于安全状态,简单地忽略异常的类型。
try
{
...
}
catch
{
...
}
但是,通过这个途径,你不能获得对异常对象的访问,而该对象含有重要的出错信息。一般化异常处理代码象这样:
try
{
...
}
catch(System.Exception e)
{
...
}
注意,你不能用 ref 或 out 修饰符传递 e 对象给一个方法,也不能赋于它一个不同的值。
7.2.2 使用 try 和 finally 清除异常
如果你更关心清除而不是错误处理, try 和 finally 会获得你的喜欢。尽管它并没有抑制出错信息,但包含在 finally 块中的代码在异常被引发后仍然会被执行。
尽管程序不正常终止,但你还可以给用户提供一条消息,如清单 7.4 所示。
清单 7.4 在finally 语句中处理异常
1: using System;
2:
3: class Factorial
4: {
5: public static void Main(string[] args)
6: {
7: long nFactorial = 1, nCurDig=1;
8: long nComputeTo = Int64.Parse(args[0]);
9: bool bAllFine = false;
10:
11: try
12: {
13: checked
14: {
15: for (;nCurDig <= nComputeTo; nCurDig++)
16: nFactorial *= nCurDig;
17: }
18: bAllFine = true;
19: }
20: finally
21: {
22: if (!bAllFine)
23: Console.WriteLine("Computing {0} caused an overflow exception", nComputeTo);
24: else
25: Console.WriteLine("{0}! is {1}",nComputeTo, nFactorial);
26: }
27: }
28: }
通过测试该代码,你可能会猜到,即使没有引发异常处理,finally也会被执行。这是真的――在finally中的代码总是会被执行的,不管是否具有异常条件。为了举例说明如何在两种情况下提供一些有意义的信息给用户, 我引进了新变量bAllFine。bAllFine告诉finally 语块,它是否因为一个异常或者仅是因为计算的顺利完成而被调用。
作为一个习惯了SEH程序员,你可能会想,是否有一个与C++中很管用的__leave 语句等价的语句。如果你还不了解,这里说明一下:在C++中的__leave 语句是用来提前终止 try 语段中的执行代码,并立即跳转到finally 语段 。
坏消息! C# 中并没有__leave 语句。但是,在清单 7.5 中的代码演示了一个你可以实现的方案。
清单 7.5 从 try语句 跳转到finally 语句
1: using System;
2:
3: class JumpTest
4: {
5: public static void Main()
6: {
7: try
8: {
9: Console.WriteLine("try");
10: goto __leave;
11: }
12: finally
13: {
14: Console.WriteLine("finally");
15: }
16:
17: __leave:
18: Console.WriteLine("__leave");
19: }
20: }
当这个应用程序运行时,输出结果为
try
finally
__leave
一个 goto 语句不能退出 一个finally 语块。甚至把 goto 语句放在 try 语句块中,还是会立即返回控制到 finally 语块。因此,goto 只是离开了 try 语块并跳转到finally 语块。直到 finally 中的代码完成运行后,才能到达__leave 标签。按这种方式,你可以模仿在SEH中使用的的__leave 语句。
顺便地,你可能怀疑goto 语句被忽略了,因为它是try 语句中的最后一条语句,并且控制自动地转移到了 finally 。为了证明不是这样,试把goto 语句放到Console.WriteLine 方法调用之前。尽管由于存在着不可到达代码,使你得到了编译器的警告,但是你将看到goto语句实际上被执行了,而没有产生“try”字符串的输出。
7.2.3 使用try-catch-finally处理所有异常
应用程序最有可能的途径是合并前面两种错误处理技术――捕获错误、清除并继续执行应用程序。所有你要做的是在出错处理代码中使用 try 、catch 和 finally语句。清单 7.6 显示了处理零除错误的途径。
清单 7.6 实现多个catch 语句
1: using System;
2:
3: class CatchIT
4: {
5: public static void Main()
6: {
7: try
8: {
9: int nTheZero = 0;
10: int nResult = 10 / nTheZero;
11: }
12: catch(DivideByZeroException divEx)
13: {
14: Console.WriteLine("divide by zero occurred!");
15: }
16: catch(Exception Ex)
17: {
18: Console.WriteLine("some other exception");
19: }
20: finally
21: {
22: }
23: }
24: }
这个例子的技巧为,它包含了多个catch 语句。第一个捕获了更可能出现的DivideByZeroException异常,而第二个catch语句通过捕获普通异常处理了所有剩下来的异常。
你肯定总是首先捕获特定的异常,接着是普通的异常。如果你不按这个顺序捕获异常,会发生什么事呢?清单7.7中的代码有说明。
清单7.7 顺序不适当的 catch 语句
1: try
2: {
3: int nTheZero = 0;
4: int nResult = 10 / nTheZero;
5: }
6: catch(Exception Ex)
7: {
8: Console.WriteLine("exception " + Ex.ToString());
9: }
10: catch(DivideByZeroException divEx)
11: {
12: Console.WriteLine("never going to see that");
13: }
编译器将捕获到一个小错误,并类似这样报告该错误:
wrongcatch.cs(10,9): error CS0160: A previous catch clause already
catches all exceptions of this or a super type ('System.Exception')
意思为:
wrongcatch.cs(10,9): 错误代码 CS0160: 前面的catch语句早已捕获了这个或高级类型('System.Exception')的所有异常。
最后,我必须报导CLR异常与SEH相比时的一个缺点(或差别):没有在SEH异常过滤器中很有用的EXCEPTION_CONTINUE_EXECUTION标识符的等价物。基本上,EXCEPTION_CONTINUE_EXECUTION 允许你重新执行负责异常的代码片段。在重新执行之前,你有机会更改变量等。我个人特别喜欢的技术为:通过使用存取违例异常,按需要实施内存分配。
7.3 引发异常
当你不得不捕获异常时,其他人首先必须首先能够引发异常。而且,不仅其他人能够引发,你也可以负责引发。其相当简单:
throw new ArgumentException("Argument can't be 5");
你所需要的是throw 语句和一个适合的异常类。我已经从表7.1提供的清单中为这个例子选出一个异常。
表 7.1 Runtime提供的标准异常
异常类型 | 描述 |
Exception | 所有异常对象的基类 |
SystemException | 运行时产生的所有错误的基类 |
IndexOutOfRangeException | 当一个数组的下标超出范围时在运行时被引发 |
NullReferenceException |
Tags:作者:佚名评论内容只代表网友观点,与本站立场无关! 评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论
本类热门阅览 |