用户登录  |  用户注册
首 页商业源码原创产品编程论坛
当前位置:PB创新网文章中心编程技巧计算机网络

数据挖掘技术在金融行业中的应用

减小字体 增大字体 作者:佚名  来源:本站整理  发布时间:2009-01-10 10:10:24
到流失的客户的共同特征,就可以在那些具有相似特征的客户还未流失之前进行针对性的弥补。

3.客户行为分析。

找到重点客户之后,可对其进行客户行为分析,发现客户的行为偏好,为客户贴身定制特色服务。客户行为分析又分为整体行为分析和群体行为分析。整体行为分析用来发现企业现有客户的行为规律。同时,通过对不同客户群组之间的交叉挖掘分析,可以发现客户群体间的变化规律,并可通过数据仓库的数据清洁与集中过程,将客户对市场的反馈自动输人到数据仓库中。通过对客户的理解和客户行为规律的发现,企业可以制定相应的市场策略。

4.为多维数据分析和数据挖掘设计和构造数据仓库。例如,人们可能希望按月、按地区、按部门、以及按其他因素查看负债和收入的变化情况,同时希望能提供诸如最大、最小、总和、平均和其他等统计信息。数据仓库、数据立方体、多特征和发现驱动数据立方体,特征和比较分析,以及孤立点分析等,都会在金融数据分析和挖掘中发挥重要作用。

5.货款偿还预测和客户信用政策分析。有很多因素会对货款偿还效能和客户信用等级计算产生不同程度的影响。数据挖掘的方法,如特征选择和属性相关性计算,有助于识别重要的因素,别除非相关因素。例如,与货款偿还风险相关的因素包括货款率、资款期限、负债率、偿还与收入(payment——to——income)比率、客户收入水平、受教育程度、居住地区、信用历史,等等。而其中偿还与收入比率是主导因素,受教育水平和负债率则不是。银行可以据此调整货款发放政策,以便将货款发放给那些以前曾被拒绝,但根据关键因素分析,其基本信息显示是相对低风险的申请。

6.业务关联分析。通过关联分析可找出数据库中隐藏的关联网,银行存储了大量的客户交易信息,可对客户的收人水平、消费习惯、购买物种等指标进行挖掘分析,找出客户的潜在需求;通过挖掘对公客户信息,银行可以作为厂商和消费者之间的中介,与厂商联手,在掌握消费者需求的基础上,发展中间业务,更好地为客户服务。

7.洗黑钱和其他金融犯罪的侦破。要侦破洗黑钱和其他金融犯罪,重要的一点是要把多个数据库的信息集成起来,然后采用多种数据分析工具找出异常模式,如在某段时间内,通过某一组人发生大量现金流量等,再运用数据可视化工具、分类工具、联接工具、孤立点分析工具、序列模式分析工具等,发现可疑线索,做出进一步的处理。

数据挖掘技术可以用来发现数据库中对象演变特征或对象变化趋势,这些信息对于决策或规划是有用的,金融行业数据的挖掘有助于根据顾客的流量安排工作人员。可以挖掘股票交易数据,发现可能帮助你制定投资策略的趋势数据。挖掘给企业带来的潜在的投资回报几乎是无止境的。当然,数据挖掘中得到的模式必须要在现实生活中进行验证。 www.qiqi8.cn 778论文在线

参考文献:

丁秋林,力士奇.客户关系管理.第1版.北京:清华人学出版社,2002

张玉春.数据挖掘在金融分析中的应用.华南金融电脑.2004

张娴.数据挖掘技术及其在金融领域的应用.金融教学与研究.2003

李宝东、宋瀚涛.数据挖掘在客户管理(CRM)中的应用[J],计算机应用研究,2002

上一页  [1] [2] 

Tags:

作者:佚名

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
PB创新网ourmis.com】Copyright © 2000-2009 . All Rights Reserved .
页面执行时间:17,953.13000 毫秒
Email:ourmis@126.com QQ:2322888 蜀ICP备05006790号